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1. Sphere Image Extraction Method
Our reference spheres seen in the training data are de-

signed to be held in a fixed position in the camera’s FOV,
but in practice their position wanders and jitters somewhat
during data collection. To address this, we extract images
of the three spheres for each video frame as follows. We
compute optical flow for each frame against the following
frame, and compute the gradient of the flow field. We mod-
ulate the gradient magnitude by 0.1θ

2

where θ is the angle
in radians between the gradient vector and the direction to
a manually marked sphere center (within 5 pixels of the ac-
tual center). This produces a noisy image with bright rings
around the spheres due to the difference in flow between
the spheres and the background. We find the highest confi-
dence bright circles in this image using template matching
within a tolerance of the marked spheres and over a range
of radii, and average the detected positions and radii across
all frames of each video to eliminate jitter.

2. Additional Quantitative Results

Table 1. Average L1 loss by BRDF: diffuse (d), mirror (m), and
matte silver (s), and RGB angular error θrgb for diffuse (columns),
for our network trained with different loss terms (rows). We com-
pare ground truth images with those rendered using our HDR
lighting inference, for seen indoor and outdoor locations.

L1(d) L1(s) L1(m) θ◦rgb(d)

Loss terms SI SO SI SO SI SO SI SO

L1(m,d,s) + Ladv 0.11 0.09 0.12 0.10 0.18 0.14 8.0 10.4
L1(m,d,s) 0.11 0.08 0.12 0.10 0.15 0.12 8.0 10.6
L1(m) 0.25 0.15 0.18 0.13 0.14 0.11 8.6 13.2
L1(s) 0.14 0.10 0.12 0.10 0.23 0.18 7.9 11.3
L1(d) 0.11 0.08 0.14 0.12 0.30 0.25 7.9 10.4

3. Performance Evaluation
We report speed and accuracy for networks trained to

predict lower resolution lighting (8×8 or 16×16) in Table 2.
∗Work completed while interning at Google.

We report the lighting inference time on a variety of mobile
devices in Table 3.

Table 2. Average inference time on a NVIDIA Quadro K1200
GPU (N) and Google Pixel 3 XL mobile CPU (P) and L1 loss
by BRDF: diffuse (d), mirror (m), and matte silver (s), and RGB
angular error θrgb for diffuse (columns), for variants of our network
trained for different output lighting resolutions [n×n] and size of
latent representations. Our baseline network is [32× 32]-256.

L1(d) L1(s) L1(m) θ◦rgb(d) Time (ms)

Network UI UO UI UO UI UO UI UO N P

Baseline 0.12 0.13 0.13 0.13 0.17 0.16 9.8 10.8 6.53 80.0
[16 × 16]-256 0.11 0.08 0.12 0.10 0.17 0.13 6.5 8.9 6.06 62.7
[16 × 16]-128 0.22 0.13 0.13 0.13 0.17 0.15 8.5 9.9 5.93 61.4
[8 × 8]-128 0.11 0.12 0.12 0.12 0.13 0.13 14.1 15.6 5.76 50.9

Table 3. Average inference time on various mobile devices / Qual-
comm Snapdragon systems-on-a-chip (QS SoCs) CPUs for our
standard (baseline) lighting estimation network.

Mobile device QS SoC Time (ms) Rate (fps)

ASUS ROG 845 (2.96 GHz Kryo 385) 57.1 17.5
Samsung Galaxy S9+ 845 (2.8 GHz Kryo 385) 59.8 16.7
Google Pixel XL 821 (2.15 GHz Kryo)1 57.8 17.3
Google Pixel 2 XL 835 (2.35 GHz Kryo 280) 102.1 9.8
Google Pixel 3 XL 845 (2.5 GHz Kryo 385) 80.0 12.5

4. Mobile Demonstration App
We develop a mobile app to demonstrate one way to use

the proposed lighting inference for rendering virtual ob-
jects. The app is based on Google’s Android framework
and uses the augmented reality platform ARCore for plane
finding and virtual object anchoring.

The lighting inference provides omnidirectional illumi-
nation, and there are many possible ways to use this infer-
ence for rendering. For example, each pixel in the HDR
lighting map is essentially a directional light, and we can
simply use all pixels to light a virtual object. However this
would be time-consuming as a 32 × 32 illumination map

1QS 821 has been shown to out-perform QS 835 for single-threaded
floating point operations [1].



has already more than 800 directional lights. This trivial
method is impractical for shadow computation as well, as it
would require the same number of shadow buffer textures
[11] for shadow mapping. Thus, in our demonstration app
we employ a well-known technique of pre-computed radi-
ance transfer [10] (PRT) for approximating the global il-
lumination computation. As the name suggests, PRT pre-
computes lighting and transfer functions in the frequency
domain. By doing so, the evaluation of the rendering equa-
tion can be reduced to a dot product between the lighting
and transfer function coefficients. A typical choice for the
frequency series is spherical harmonics (SH). We encode
both functions with the first nine SH coefficients per color
channel, up to 2nd order SH. We also implement environ-
ment mapping [2] for realistic sharp specular, mirror-like
reflections, and blend these sharp reflections with the PRT
rendered result [6]. Other real-time rendering techniques
could also be employed, such as irradiance mapping for
dynamic, animated objects [8]. Furthermore, our generic
lighting representation could be converted to a set of n point
or directional light sources for real-time rendering, using a
sampling technique as in [4].

We choose Lullaby, an open source graphics library for
mobile devices, as the rendering engine for our demo ap-
plication. For every input image from the live camera feed,
the demo app uses the neural network to infer the lighting
environment in camera space. Subsequently, the SH coef-
ficients of the inferred lighting are computed on CPU and
then fed to the GPU. Finally, the SH PRT is evaluated in
the fragment shader pass. See the supplemental video for
several live recordings of the demonstration app.

5. Off-line Rendering Technique
For our virtual object relighting comparisons (main pa-

per Fig. 1 and 7, and supplemental materials Fig. 4 and 5),
we use global illumination (GI) rendering techniques and
image-based lighting (IBL) [3], using the Arnold renderer.
For all images, we use Arnold’s aiStandardSurface shader
for both the diffuse and matte silver virtual bunnies, shader
parameters in Tables 4 and 5 respectively. These param-
eters were selected to best visually match the reflectance
field basis images for spheres coated with the same paint
as the real, 3D printed bunnies. For these off-line renders,
virtual objects were set on a virtual planar surface manu-
ally placed by an artist to best match the background plate,
after first setting the virtual camera’s approximate FOV. We
use the Arnold aiShadowMatte shader for the virtual planes,
with parameters in Table 6, which allows virtual objects to
cast shadows onto them. Furthermore, this shader enables
indirect diffuse and specular shading of virtual objects us-
ing colors sampled from the background image at the lo-
cation where the placed virtual plane projects into the back-
ground image. Thus, the light bouncing off the virtual plane

is tinted the color of the background image, which is then
used to light the underside of any virtual object placed on
the surface.

Table 4. Diffuse gray object aiStandardSurface shader parameters.
parameters values

base weight 0.700
base color RGB [0.649, 0.700, 0.700]
specular weight 0.300
specular roughness 0.600
IOR 1.7

Table 5. Matte silver object aiStandardSurface shader parameters.
parameters values

base weight 1.000
base color RGB [0.588, 0.600, 0.600]
metalness 1.000
specular roughness 0.470

Table 6. Virtual plane object aiShadowMatte shader parameters.
parameters values

use background image on
shadow color RGB [0.000, 0.000, 0.000]
shadow opacity 1.000
diffuse indirect on
diffuse use background image on
diffuse intensity 1.000
specular indirect on
specular intensity 0.200
specular roughness 0.200
IOR 1.5

6. Additional Comparisons with Previous
Work

Extending the qualitative comparisons with the state-of-
the-art techniques, in Fig. 2 we show examples of unseen
indoor input images and spheres of three BRDFs (diffuse,
matte silver, and mirror) rendered using image-based re-
lighting with our measured reflectance bases and our light-
ing inference and that of Gardner et al. [5], along with the
ground truth sphere appearances. In Fig. 3 we show unseen
outdoor input images, along with ground truth sphere im-
ages and renderings produced using our lighting inference
and that of Hold-Geoffroy et al. [7].

Extending the virtual object relighting comparisons, in
Fig. 4 we show unseen indoor input images (Fig. 4a) along
with photographs of 3D-printed “real” bunnies, painted
with two different finishes: diffuse (Fig. 4b) and matte sil-
ver (Fig. 4f). Using GI rendering with IBL [3], we render a
virtual object using a ground truth HDR panorama captured
by photographing a mirror sphere with multiple exposures
using a Canon 5D Mark III DSLR camera (Fig. 4c and g),
and using our lighting inference (Fig. 4d and h) and that
of Gardner et al. [5](Fig. 4d and i). In Fig. 5, we show
unseen outdoor input images and the same set of compar-
isons, except that we compare with the lighting inference

https://github.com/google/lullaby


of Hold-Geoffroy et al. [7]. For the ground truth HDR
panoramas, missing sun intensity was reconstructed using
the techniques of [9]. These extended sets of renderings
demonstrate that inferring lighting that generates accurate
hard shadows is challenging for all approaches, including
ours, indicating another avenue for future work.

Perceptual User Study. We presented 40 study partici-
pants with image triples: a reference image of a real, 3D-
printed bunny in a scene (center), flanked by two rendered
bunny composites. These were selected from three cate-
gories: bunnies rendered using our lighting inference, infer-
ence from the previous state-of-the-art [5]/[7], and ground
truth HDR image-based lighting (IBL). Images were from
paper Figs. 1 and 7, and supp. Figs. 4 and 5, represent-
ing bunnies of two BRDFs in 17 environments. Participants
were asked “Which bunny looks more like the one in the ref-
erence image?”, choosing between {ours vs. [5]/[7]}, {ours
vs. GT HDR IBL}, or {[5]/[7] vs. GT HDR IBL} (n=34
each, question order and left/right image randomized). For
ours vs. [5]/[7], 69% of responses indicated that renders us-
ing our lighting estimates looked more like the reference,
with 38% indicating “much more” (Fig. 1 top). For ours
vs. GT HDR IBL, 29% of responses indicated renders us-
ing lighting inference looked equally like or more like the
reference, while for [5]/[7] vs. GT HDR IBL, 5% indicated
as such (Fig. 1 bottom).

Figure 1. Results from user study (percentages of responses).
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Figure 2. Qualitative comparisons between ground truth sphere images and renderings produced with IBRL using our predicted HDR
lighting and that of the previous state-of-the-art for unseen indoor[5] scenes.
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Figure 3. Qualitative comparisons between ground truth sphere images and renderings produced with IBRL using our predicted HDR
lighting and that of the previous state-of-the-art for unseen outdoor[7] scenes.
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Figure 4. For each input image (a), we photograph a real 3D-printed bunny placed in the scene for two different BRDFs (b, f) and capture
ground truth HDR panoramas at the bunny’s location. Using GI rendering with IBL, we render a virtual bunny into the scene using ground
truth lighting (c, g), our lighting inference (d, h), and that of the state-of-the-art methods for indoor [5] scenes (e, i).
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Figure 5. For each input image (a), we photograph a real 3D-printed bunny placed in the scene for two different BRDFs (b, f) and capture
ground truth HDR panoramas at the bunny’s location. Using GI rendering with IBL, we render a virtual bunny into the scene using ground
truth lighting (c, g), our lighting inference (d, h), and that of the state-of-the-art methods for outdoor [7] scenes (e, i).


