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(a) Dual-camera (DC) input (b) Dual-pixel (DP) input (c) Stereonet (DC input) [24] (d) DPNet (DP input) [13] (e) Du2Net (Ours)

Fig. 1: Du2Net combines dual-camera (DC) and dual-pixel (DP) images to pro-
duce edge-aware disparities with high precision even near occlusion boundaries.
The large vertical DC baseline complements the small horizontal DP baseline to
mitigate the aperture problem (top) and occlusions (bottom).

Abstract. Computational stereo has reached a high level of accuracy,
but degrades in the presence of occlusions, repeated textures, and cor-
respondence errors along edges. We present a novel approach based on
neural networks for depth estimation that combines stereo from dual
cameras with stereo from a dual-pixel sensor, which is increasingly com-
mon on consumer cameras. Our network uses a novel architecture to fuse
these two sources of information and can overcome the above-mentioned
limitations of pure binocular stereo matching. Our method provides a
dense depth map with sharp edges, which is crucial for computational
photography applications like synthetic shallow-depth-of-field or 3D Pho-
tos. Additionally, we avoid the inherent ambiguity due to the aperture
problem in stereo cameras by designing the stereo baseline to be orthog-
onal to the dual-pixel baseline. We present experiments and comparisons
with state-of-the-art approaches to show that our method offers a sub-
stantial improvement over previous works.

Keywords: Dual-Pixels, Stereo Matching, Depth Estimation, Compu-
tational Photography



2 Y. Zhang et al.

1 Introduction

Despite their maturity, modern stereo depth estimation techniques still suffer
from artifacts in occluded areas, around object boundaries and in regions con-
taining edges parallel to the baseline (the so-called aperture problem). These
errors are especially problematic for applications requiring a depth map that is
accurate near object boundaries, such as synthetic shallow depth-of-field or 3D
photos.

While these problems can be mitigated by using more than two cameras, a re-
cent improvement to consumer camera sensors allows us to alleviate them with-
out any extra hardware. Specifically, camera manufacturers have added dual-
pixel (DP) sensors to DSLR and smartphone cameras to assist with focusing.
These sensors work by capturing two views of a scene through the camera’s sin-
gle lens, thereby creating a tiny baseline binocular stereo pair (Fig. 2). Recent
work has shown that it is possible to estimate depth from these dense dual-pixel
sensors [13,45]. Due to the tiny baseline, there are fewer occluded areas between
the views, and as a result the depth from dual-pixels is more accurate near ob-
ject boundaries than the depth from binocular stereo. However, the tiny baseline
also means that the depth quality is worse than stereo at farther distances due
to the quadratic increase in depth error in triangulation-based systems [43].

In this work, we consider a dual-camera (DC) system where one camera has
a dual-pixel sensor, a common setup on recently-released flagship smartphones.
We propose a deep learning solution to estimate depth from both dual-pixels
and dual-cameras. Because depth from dual-cameras and depth from dual-pixels
have complementary errors, such a setup promises to have accurate depth at
both near and far distances and around object boundaries. In addition, in our
setup, the dual-pixel baseline is orthogonal to the dual-camera baseline. This
allows us to estimate depth even in regions where image texture is parallel to
one of the two baselines (Fig. 1). This is usually difficult due to the well known
aperture problem [33].

One key problem that prevents the trivial solution of multi-view stereo match-
ing from working is a fundamental affine ambiguity in the depth estimated from
dual-pixels [13]. This is because disparity is related to inverse depth via an affine
transformation that depends on the camera’s focus distance, focal length and
aperture size, which are often unknown or inaccurately recorded.

To address this issue, we propose an end-to-end solution that uses two sep-
arate low resolution learned confidence volumes, i.e. the softmax of a negative
cost volume, to compute disparity maps from dual-cameras and dual-pixels inde-
pendently. We then fit an affine transformation between the two disparity maps
and use it to resample the dual-pixels’ confidence volume, so that it is in the
same space as the dual-cameras’ confidence volume. The two are then fused to
estimate a low resolution disparity map. A final edge-aware refinement [24] that
leverages features computed from dual-pixels is then used to obtain the final
high resolution disparity map.

To train and evaluate our approach, we capture a new dataset using a capture
rig containing five synchronized Google Pixel 4 smartphones. Each phone has
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two cameras and each capture consists of ten RGB images (two per phone) and
the corresponding dual-pixel data from one camera on each phone. We use multi-
view stereo techniques to estimate ground truth disparity using all ten views.
We plan to release this dataset.

Via extensive experiments and comparisons with state-of-the-art approaches,
we show that our solution effectively leverages both dual-cameras and dual-
pixels. We additionally show applications in computational photography where
precise edges and dense disparity maps are the key for compelling results.

2 Related Work

Stereo matching is a fundamental problem in computer vision and is often used
in triangulation systems to estimate depth for various applications such as com-
putational photography [45], autonomous driving [32], robotics [10], augmented
and virtual reality [36] and volumetric capture [15]. Traditionally, stereo match-
ing pipelines [40] follow these main steps: matching cost computation, cost ag-
gregation, and disparity optimization, often followed by a disparity refinement
(post-processing) step. This problem has been studied for over four decades [29]
and we refer the reader to [16,40,41] for a survey of traditional techniques.

Recent classical approaches aim at improving the disparity correspondence
search by using either global [3,11,26,27] or local [4,8,44] optimization schemes.
These methods usually rely on hand-crafted descriptors [4,44] or learned shallow
binary features [8,9] followed by sequential propagation steps [4,9] or fast parallel
approximated CRF inference [8, 44]. However, these methods cannot compete
with recent deep learning-based methods that use end-to-end training [5, 7, 23,
24, 28, 42, 46]. Such approaches were introduced by [22, 30], who used encoder-
decoder networks for the problems of disparity and flow estimation.

Kendall et al. [23], inspired by classical methods, employed a model architec-
ture that constructs a full cost-volume with 3D convolutions as an intermediate
stage and infers the final disparity through a soft-arg min function. Khamis et
al. [24] extended this concept by using a learned edge aware refinement step
as the final stage of the model to reduce computational cost. More recently,
PSMNet [5] used a multi-scale pooling approach to improve the accuracy of the
predicted disparities. Finally [47], inspired by [20], used a semi-global matching
approach to replace the expensive 3D convolutions.

Other end-to-end approaches use multiple iterative refinements to converge
to a final disparity solution. Gidaris et al. [14] propose a generic architecture
for labeling problems, such as depth estimation, that is trained end-to-end to
predict and refine the output. Pang et al. [37] propose a cascaded approach to
learn the depth residual from an initial estimate. Despite this progress, stereo
depth estimation systems still suffer from limited precision in occlusion bound-
aries, imprecise edges, errors in areas with repeated textures, and the aperture
problem. The aperture problem can be addressed with two orthogonal dual cam-
era pairs [31]. Occlusions can be reduced by using trinocular stereo [34]. Both
of these approaches require additional hardware and more complex calibration.
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(c) DP Optics for Scene 1 (d) DP Optics for Scene 2
Focal Plane Lens Sensor DP data Image

View 1
View 2

Focal Plane Lens Sensor
(a) Regular Sensor (b) DP Sensor

DP data Image

Fig. 2: In a regular Bayer sensor, each pixel has a microlens on top to collect more
light (a). Dual-pixel sensors split some of the pixels underneath the microlens into
two halves; the green pixels in (b). The two dual-pixel views get their light from
different halves of the aperture, resulting in a slight depth-dependent disparity
between the views (c). Different scenes can produce the same dual-pixel images
if the focus distance changes ((c) vs. (d)). This is a fundamental ambiguity of
dual-pixel sensors. (Reproduced with permission from Garg et al. [13].)

In this work, we combine bincocular stereo with a dual-pixel sensor, a hardware
available in most modern smartphone and DSLR cameras where they are used
for autofocus.

Recently, a handful of techniques have been proposed to recover depth from
a single camera using dual-pixels [13, 45]. Dual-pixels are essentially a two-view
light field [35], providing two slightly different views of the scene. These two
views can be approximated as a stereo pair except for a fundamental ambiguity
identified by [13] discussed in the introduction. In addition to depth estimation,
dual-pixels have been used for dereflection [38].

3 Dual-Pixel Sensors

Dual-pixel sensors work by splitting each pixel in half, such that the left half
integrates light over the right half of the aperture and the right half integrates
light over the left half of the aperture. Because the two half pixels see light from
different halves of the aperture, they form a kind of “stereo pair”, whose centers
of projection are in the centers of each half aperture. Since the two half pixel
images account for all the light going through the aperture, when they are added
together, the full normal image is recovered.

These sensors are becoming increasingly common in smartphone and DSLR
cameras because they assist in auto-focus. The reason for this is that the zero-
disparity distance corresponds exactly to the image being in-focus (e.g. the blue
point in Fig. 2(c)) and disparity is exactly proportional to how much the lens
needs to be moved to make the image in-focus. This property also implies that
unlike rectified stereo image pairs, the range of disparities can be both negative
and positive for DP data.

In addition to this dependence on focus distance, dual-pixels have a number
of other key differences from stereo cameras. On the positive side, the dual-pixel
views are perfectly synchronized and have the same white balance, exposure
and focus, making matching easier. In addition, they are perfectly rectified. This
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means that the baseline is perfectly horizontal for a sensor whose dual-pixels are
split horizontally as in Fig. 2(b). Another advantage of this perfect rectification
is that, dual-pixel sensors are not affected by rolling shutter or optical image
stabilization [6], which shifts the principal point and center of projection of a
camera. While we need to calibrate for this with stereo cameras, it does not
cause problems for dual-pixel images.

Like in a stereo pair, the small baseline of dual-pixel images means that depth
estimation at large distances is difficult. Please see the supplementary material
for a visualization of the tiny parallax between the DP images. However, it also
means there are fewer occlusions and it is possible to get accurate depth near
occlusion boundaries in the image. This suggests that a system that combines
dual-cameras and dual-pixels could recover depth at short distances and in oc-
cluded areas from dual-pixels and depth at larger distances from dual-cameras.

Another difference between dual-pixels and traditional stereo cameras is the
interaction between defocus and disparity. Specifically, the amount of defocus
is exactly proportional to the disparity between the views. This means that a
learned model that makes use of dual-pixels could make use of defocus as well
to resolve ambiguities that typically fool matching-based approaches, such as
repeated textures.

Finally, we elaborate on the affine ambiguity of depth predictions discussed
in the introduction (Fig. 2(c-d)). This happens because the mapping between
disparity and depth depends on focus distance which is often inaccurate or un-
known in cheap smartphone camera modules. Garg et al. [13] used the paraxial
and thin-lens approximation to show thatDDP (x, y) = α+β/Z(x,y), where Z(x, y)
is the depth for pixel x, y; DDP (x, y) is the dual-pixel disparity at (x, y), and α
and β are constants that depend on the aperture, point spread function, and the
focus distance of the lens. Because these can be difficult to determine, inverse
depth can be estimated only up to an unknown affine transform.

If there is a second camera in addition to the camera with dual-pixels, such
as in our setup, the stereo disparity DDC of the dual-cameras is bf/Z [43] where
b is the baseline and f is the focal length. From this, it follows that DDC and
DDP are also related via an affine transform

DDC(x, y) = α′ + β′DDP (x, y) (1)

We use this observation in our network architecture to effectively integrate
stereo and dual-pixel cues.

4 Fusing Dual-Pixels and Dual-Cameras

We describe our deep learning model to predict disparity from both dual-camera
and dual-pixel data (Fig. 3). The input to our system is a pair of rectified dual-
camera (DC) images, Il and Ir corresponding to the left and the right cameras,
and a pair of dual-pixel (DP) images from the right camera sensor, IDPt and
IDPb corresponding to the top and bottom half-pixels on the sensor.
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Fig. 3: Overview of Du2Net. Top: two disparity maps are separately inferred
from the dual-camera and the dual-pixel branches. An affine transformation is
fit between them and used to resample the dual-pixel confidence volume. It is
then fused with the dual-camera volume and they are together used to infer the
unrefined disparity. An edge-aware refinement step uses the dual-pixel features
to predict the final disparity. Bottom: details of the volume fusion and refinement
step. See text for more details.

At capture time, the DP images are perfectly aligned with the right DC im-
age. However, after stereo rectification, the left and right dual-camera images
are respectively warped by spatial homography transformations Wl(x, y) and
Wr(x, y), which remaps every pixel to new coordinates in both images. As a
result, the right image is no longer aligned with the dual-pixel images. In addi-
tion, as explained in Section 3, the two disparity maps coming from DC and DP
respectively, are related via an affine transformation. Our method takes both of
these issues into account when fusing information from the two sources.

Our model uses two building blocks from other state-of-the-art stereo match-
ing architectures. Specifically, a cost volume [5, 23, 24] and refinement stages
[24, 37]. Our main contributions are a method to fuse the confidence volumes
(the softmax of the negative cost volume) computed from dual-cameras and
dual-pixels, and to show the effectiveness of dual-pixels for refinement. Note
that the proposed scheme can be used to give any stereo matching method that
uses a cost-volume or that has a refinement stage, the benefits of the additional
information in dual-pixels.

Our model consists of three stages, (a) extracting features and building cost
volumes from DP and DC inputs independently, (b) building a fused confidence
volume by fusing the DP and DC confidence volumes while accounting for the
aforementioned spatial warp and affine ambiguity, and (c) a refinement stage
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that refines the coarse disparity from the fused confidence volume using features
computed from the DP and DC images. We will now explain these in detail.

4.1 Feature Extraction and Cost Volumes

Dual-Camera Cost Volume. Inspired by [24], we create features that are 1/8
of the spatial resolution in each axis of the original DC images. We do this by
running three 2D convolutions with stride 2 followed by six residual blocks [18].
Each convolutional layer uses a kernel of size 3×3 with 32 channels, followed by
leaky ReLU activations. The resulting feature map from the left image is warped
to the right feature map using multiple disparity hypotheses d ∈ [0, 16]. For each
hypothesis, we calculate the distance between the two feature maps. Unlike [24],
we use the `1 distance instead of subtracting the features since this increases the
stability of training.

Dual-Pixel Cost Volume. Due to the tiny baseline (<∼ 1 mm), the disparities
between DP views are usually in the range −4 to 4 pixels. Creating a cost
volume with hypotheses that are one pixel apart (at reduced resolution) leads
to unstable training. This is because all the possible disparities correspond to
the same hypothesis. Instead, we concatenate the two DP images and implicitly
produce the cost volume. To do so, we feed the DP images into a 2D network
with six residual blocks. Each layer consists of convolutions of size 3 × 3 with
32 channels followed by leaky ReLU activations. A 2D convolution is attached
to the end to produce a feature map with Nd channels, where Nd = 17 is the
number of desired disparity hypotheses (0.5 pixels per sample from −4 to 4). We
then reshape the feature map and convert it to a 3D volume by expanding the
final dimension.

4.2 Fused Confidence Volume

It is not straightforward to merge the DP and DC cost volumes due to the
rectification warp Wr between the DP and DC images and the affine ambiguity
in DP disparity (Sec 3). In addition, the costs in the two volumes may be scaled
differently since they are predicted from different network layers.

We first normalize the two cost volumes to the range [0, 1] by applying soft-
max to the negative cost volume along the disparity dimension. We call the
resulting tensors confidence volumes. To handle the affine ambiguity, we first
predict disparity maps DDP and DDC from the two confidence volumes using a
soft–arg max operator [23], and fit an affine transformation between the two by
solving a Tikhonov-regularized least squares problem that biases the solution to
be close to α = 0, β = 1:

α̂, β̂ = argmin
α,β

‖(α+ β ·DDP )−DDC‖2 + γ ‖β − 1‖2 + γ ‖α‖2 , (2)
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where γ = 0.1 is a regularization constant. Then, we use the known rectification
warp Wr(x, y) = [W x

r (x, y),W y
r (x, y)] and the estimated affine transformation

to warp the DP confidence volume into the DC space:

CDPwarp(x, y, z) = CDP
(
W x
r (x, y),W y

r (x, y), (z − α̂)/β̂
)
, (3)

where CDP is the confidence volume built from DP images. The 3D warping
uses differentiable bilinear interpolation and zero padding.

The warped DP confidence volume CDPwarp is now normalized and aligned with
the DC confidence volume. We stack these together to form a 4D tensor that
is fused into a 3D confidence volume by a shallow network consisting of three
layers of 3D convolutions with leaky ReLU activations and a softmax at the
end. Finally, the fused volume is converted into a disparity map Dunref using a
soft–arg max.

4.3 Disparity Refinement

The next step is to refine the low resolution disparity Dunref . Khamis et al. [24]
use the RGB image as the guide image to upsample the disparity while applying a
learned residual to improve edges and minimize the final error. A straightforward
extension of [24] is to warp the DP images using the rectification warp Wr and
use them along with the RGB image as the guide image. However, we find that
this yields inferior results compared to our method, presumably because warping
and resampling makes it harder to extract disparity cues from DP images.

Instead, we extract features from the input DP images and then warp them
using Wr. This way, the model can easily extract disparity cues from the per-
fectly rectified DP image pair. The warped features are concatenated with the
features extracted from the right RGB image and the unrefined disparity Dunref .
These are fed into six residual blocks, with 3 × 3 convolutions followed by
a leaky ReLU activation, to predict a residual R. The final output is set to
Dref = Dunref +R.

4.4 Loss Function

To train our network we use a weighted Huber loss [21]:

L(D) =

∑
pH (D(p)−Dgt(p), δ) · Cgt(p)∑

p C
gt(p)

, (4)

where Dgt is the ground truth disparity, Cgt is the per-pixel confidence of the
ground truth, and δ is the switching point between the quadratic and the linear
function, which is set to 1 for disparity in range [0, 128]. The overall loss is a
weighted sum of four terms:

Ltotal = λDPL(α̂+β̂ ·DDP )+λDCL(DDC)+λunrefL(Dunref )+λrefL(Dref ), (5)

where λDC is set to 10 and the other weights are set to 1.
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5 Evaluation

In this section, we perform extensive experiments to evaluate our model. We
conduct an ablation study to show the effectiveness of our design choices. We
also compare to other stereo and dual-pixel methods. We focus our experiments
on thin structures, edges and occlusion boundaries, to show the effectiveness of
the complementary information coming from DP and DC data. For quantitative
evaluations we report MAE, RMSE and the bad δ metric, i.e. the percentage of
pixels with disparity error greater than δ. These are weighted by the ground-
truth confidence. See the supplementary material for details.

5.1 Data Collection

We collect a new data set using the Google Pixel 4 smartphone, which has a
dual camera system consisting of a main camera with a dual-pixel sensor and
a regular telephoto camera. We refer to the main camera as the right camera
and the telephoto camera as the left camera. We use a data acquisition set up
similar to [13], i.e., a capture rig consisting of 5 phones (Fig. 4a) synchronized
with [2]. Structure from motion [17] and multi-view stereo techniques are used to
generate depth maps. Similar to [13], we also compute a per-pixel confidence for
the depth by checking for depth coherence with neighboring views. The center
phone in the rig is used for training and evaluation since its depth quality is
higher than other views especially for occluded regions.

(a) Capture Rig (b) DP Views (c) Right View (d) Left View (e) GT (f) GT (Occ.)

Fig. 4: Our capture rig (a) similar to [13] but with phones that can capture both
dual-pixel (b) and dual-camera (c, d) data. The left and right views are rectified,
and the ground truth disparity (e) corresponding to the right view is computed
using multi-view stereo techniques on all 10 views captured by the rig. Low
confidence depth samples are rendered in black. The multitude of views ensures
that we have good quality depth in regions that are occluded in the left view.
(f) shows the GT depth masked to regions that are occluded in the left view.

We rectify the stereo images from the center phone using estimated camera
poses [12]. The estimated depth is converted to disparity and then rectified along
with confidences to yield Dgt

l , C
gt
l and Dgt

r , C
gt
r for the left and right images

respectively. As described in Section 4, dual-pixel images from the main (right)
camera are not rectified or warped. Instead, we store the warp map Wr that is
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DP in Confidence Volume

Conf. Volume MAE RMSE δ>2 δ>3

DC 1.023 2.502 10.65 6.32
DP+DC (2D) 0.969 2.423 9.72 5.79
DP+DC (C) 0.964 2.372 9.79 5.80

DP+DC (Ours) 0.889 2.263 8.78 5.18

DP in Refinement

Refinement MAE RMSE δ>2 δ>3

RGB 0.838 2.197 7.74 4.55
DP (I) 0.835 2.173 7.75 4.54

DP 0.829 2.184 7.51 4.45
RGB+DP (Ours) 0.802 2.147 7.17 4.25

Table 1: Ablation Study. Left: We compare different ways of fusing DP with
the DC confidence volume. ‘(2D)’ indicates fusion of the 2D disparity maps
extracted from the two confidence volumes. ‘(C)’ indicates fusing cost volumes
instead of confidence volumes. Right: We compare the different ways of using DP
to refine the best unrefined disparity from the left and show evaluation on the
final disparity. ‘(I)’ indicates that input DP images are warped before computing
features for refinement.

needed to warp and align the DP images with the rectified right camera image
(see Section 4). In addition, to evaluate the quality of the estimated disparity
in regions that are visible in only one of the cameras in the stereo pair, we also
compute Cocc

i for i ∈ l, r, i.e., a per-pixel confidence indicating that the ground-
truth disparity is correct but the pixel is occluded in the other camera. In total,
we collect 3308 training examples and 1077 testing examples. Please refer to
supplementary materials for details of the calculation of Cocc

i , data collection
and ground truth calculation.

5.2 Training Scheme

We use Tensorflow [1] to implement the network and train using Adam [25] for
2 million iterations with a batch size of 1. The learning rate is set to 3 × 10−5

and then reduced to 3× 10−6 after 1.5 million iterations. Training takes roughly
16 hours using 8 Tesla V100 GPUs. Inputs to the network Il, Ir, and Wr are
resized to match the resolution of the predicted and the ground truth disparity,
i.e., 448× 560. DP images IDPt and IDPb are of size 1000× 1250.

5.3 Ablation Study

We evaluate the effect of each component of the model. In particular we focus
on the impact of dual-pixels on the fused volume and the refinement stage. We
provide quantitative comparisons (Tab. 1) and qualitative comparisons (Fig. 5).

Dual-pixels in the confidence volume. Tab. 1 (left) shows the error of the unre-
fined disparity Dunref using different fusing strategies for the cost volume. Our
method of merging the DP and DC volumes (DP+DC) significantly outperforms
using only the DC cost volume. We also compare to fusing the 2D disparity maps
instead of the the 3D confidence volumes. Specifically, we concatenate DDP and
DDC after the affine transformation and use a 2D neural network with six resid-
ual blocks to predict Dunref . This is worse than our method according to all
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(a) Image (b)GT (c)Dunref (d)Dunref (e)Dref (f)Dref

DC, RGB+DP Du2Net DP+DC,RGB Du2Net

Fig. 5: Ablations of our method. The right camera image (a), ground truth dis-
parity (b) with low confidence disparity in black, Dunref (c) from an ablation
where only the DC input is used for the confidence volume, Dunref (d) from
Du2Net, Dref (e) from an ablation where only the RGB image is used for re-
finement, and Dref (f) from Du2Net. DP input is useful for both the confidence
volume and refinement stages to recover accurate depth for fine structures and
occluded regions.

metrics (DP+DC (2D) vs DP+DC). Finally, we evaluate fusing cost volumes
instead of confidence volumes. This, DP+DC (C), is also inferior to DP+DC.

Qualitative comparisons are shown in Fig. 5 (c) and (d). Compared to a DC
only cost volume (c), fusing DP into the cost volume (d) adds more details to
the unrefined disparity and prevents errors at object boundaries. This is critical
for getting high quality disparities since the refinement is only able to make local
adjustments to the disparity and cannot fix large errors.

Dual-pixels in refinement. We show that our method of using dual-pixels in the
refinement stage is better than several baselines (Tab. 1 (right)). We use the fused
DP + DC confidence volume for all cases and extract RGB and DP features for
refinement using networks with the same capacity for a fair comparison. Using
DP for refinement is better than just using the right RGB image. However,
results are best when both are used (RGB+DP). Notably, if the DP is warped
before feature extraction (instead of after), performance (DP (I) in Tab. 1) is
not better than using only the RGB image. This suggests that DP cues are not
effective after warping, and it is important to extract features before warping.

Qualitative comparisons are shown in Fig. 5 (e) and (f). While both methods
use DP and DC to compute the unrefined disparity, (e) uses only the right RGB
image for refinement, and (f) uses RGB and DP for refinement. Even though
DP increases the quality of the unrefined disparity, using it during refinement
further improves depth quality at thin structures and near object boundaries.
This indicates that it is important to use DP for both the cost volume and the
refinement to achieve the best performance.
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Method Input
All Pixels Occluded Pixels

MAE RMSE δ>2 δ>3 MAE RMSE δ>2 δ>3

GA-Net [47] DC 1.001 2.425 9.31 6.09 6.068 8.386 69.81 60.07
PSM-Net [5] DC 0.815 2.289 7.98 4.97 2.799 5.188 34.73 26.78

StereoNet [24] DC 0.935 2.432 9.07 5.41 3.123 5.632 38.13 28.49
Du2Net(ours) DC + DP 0.802 2.147 7.17 4.25 2.396 4.543 30.62 21.91

DPNet* [13] DP 1.090 1.989 12.60 5.80 2.594 4.307 38.14 26.18
Du2Net* (ours) DC + DP 0.746 1.825 6.63 3.63 2.352 4.373 32.65 21.77

Table 2: Quantitative comparisons to the state-of-the-art. Note how the proposed
approach substantially outperforms the StereoNet baseline [24], and GA-Net
[13]. The method is on par with the more sophisticated PSM-Net [5] and it
outperforms all the competitors in occluded regions. ‘*’ indicates a final affine
transformation applied to the output disparity and the best results for these
methods are highlighted separately (see text for details).

5.4 Comparison to State-of-the-art Methods

We compare to other stereo and dual-pixel depth estimation approaches (Tab. 2).
All methods are trained on our data using code provided by the authors. We mod-
ified the original loss functions to use the confidence maps Cgtr from our dataset
in the same way that these are used in our method (as a per pixel weight).
Additionally, for the stereo methods we compare to, we set the maximum dis-
parity range to 128. The baseline methods were trained until convergence on the
test set error. We used the hyper-parameters and training optimization strate-
gies (including annealing schedules for learning rates) provided in the original
implementations.

For stereo baselines, we compare to StereoNet [24] which is similar to our
model with only the DC input, PSMNet [5] and GANet [47]. PSMNet [5] uses
multi-scale feature extraction and cost volumes, and GANet [47] uses a sophis-
ticated semi-global aggregation [47]. In Tab. 2, we report quantitative results.
Our model uses a low-resolution cost volume and a refinement stage, with a run-
time comparable with StereoNet, while achieving accuracy that is on par with
or higher than more computationally expensive models, such as PSMNet (which
uses 25 3D convolutional layers as opposed to our 8).

For DP input baselines, DPNet [13] predicts disparity up to an unknown
affine transformation. To handle this, like [13], we find the best fit (according
to MSE) affine transformation between the prediction and the ground truth
and transform the prediction to compute the metrics. For a fair comparison, we
apply the same post processing to our method (Du2Net* in Tab. 2), showing it
consistently outperforms DPNet.

As mentioned in Sec. 5.1, we also compute an occlusion mask Cocc
r and eval-

uate the methods only on these pixels. The results are reported in Tab. 2 under
“Occluded pixels”. Our method outperforms the other competitors by a sub-
stantial margin in those areas showing the advantage of small baseline DP data.

Qualitative comparisons are provided in Fig. 6. Note how we better capture
fine details and small structures, while correctly inferring disparity near occlu-
sion boundaries. The orthogonal baselines of the dual-pixels and dual-cameras
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 6: Qualitative comparison to the state-of-the-art. Right camera image (a)
from our test set, ground truth disparity with low confidence disparity in black
(b), and results from our method (c), stereo only methods StereoNet [24] (d)
and PSMNet [5] (e), and DP only method DPNet [13] (f). Stereo only methods
fail for vertical structures due to the aperture problem, e.g., in the second image.
They also fail in regions with fine structures and occlusions, e.g., in the first three
images. StereoNet fails on the last image potentially due to repeated texture.
DPNet’s accuracy falls quickly with distance due to the small dual-pixel baseline.
Our method overcomes these problems by fusing the two cues.

also helps mitigate the aperture problem and issues due to repeated textures.
Additional results are available in the supplementary material.

5.5 Applications in Computational Photography

Predicting accurate disparities, hence depth, is crucial for many applications in
computational photography. These applications usually require accurate depth
for fine structures and near occlusion boundaries. Fig. 7 and 8 show how our
more accurate depth leads to fewer artifacts when used to produce synthetic
shallow depth-of-field images and 3D photos [19] respectively.

6 Discussion

We presented the first method to combine dual-camera and dual-pixel data. The
inherent affine ambiguity of disparity computed from dual-pixel images prevents
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(a) Image (c)Ours (d) StereoNet [24] (e) PSMNet [5] (f)DPNet [13]

Fig. 7: Synthetic shallow depth-of-field results for different methods. Top: Accu-
rate depth near occlusion boundaries is critical for avoiding artifacts near the
subject boundary. Bottom: DPNet [13] is unable to resolve the small depth dif-
ference between the flower and the twigs in the background. As a result, parts
of the background are incorrectly sharp.

a straightforward integration of the two modalities. Therefore, we proposed a
novel solution that resamples the confidence volume computed from dual-pixels
and concatenates it with the dual-camera volume. A refinement stage leverages
dual-pixels to infer the final disparity map. We show the effectiveness of the
proposed solution with experiments, comparisons to the state-of-the-art and ap-
plications. Our dataset will be released publicly and we hope it can advance the
field. While the orthogonality of the baselines allows us to avoid the aperture
problem, our method doesn’t work on textureless regions. Perhaps this could be
handled by combining information from additional modalities like active depth
sensors. Another interesting direction for future work would be to consider dual-
camera pairs where both cameras have dual-pixels.

(a) Image (c)Ours (d) StereoNet [24] (e) PSMNet [5] (f)DPNet [13]

Fig. 8: 3D photos results [19]. Novel views of the scene are rendered by warping
the image according to the estimated depth to new camera positions. Depth
errors lead to unnatural distortion of rigid scene structures in the novel views.
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Supplementary Materials

In this supplementary material, we provide more information for data collec-
tion, implementation details, and quantitative and qualitative results.

A Data Collection

In this section, we provide information about our data capture rig and how we
obtain the ground truth disparity, confidence, and the occlusion mask.

A.1 Data Capture

View 1 View 2 View 3 View 4 View 5

Fig. 9: Example capture from our data collection rig. Top: Views from the main
cameras of the five phones on the rig. Bottom: Views from the telephoto cameras.
All ten views are used to compute ground truth depth using multi-view stereo
techniques.

As shown in Fig. 4(a) in the main paper, our capture rig consists of five
Google Pixel 4 phones. Each phone captures a stereo pair (and dual-pixel data),
giving us ten views of the same scene (Fig. 9). The five phones are synchronized
using [2] allowing us to capture dynamic scenes, e.g., plants moving in the wind.
Our dataset is captured both indoors and outdoors, and contains both man made
and natural scenes.

A.2 Computing Ground Truth Disparity Dgt and Confidence Cgt

We now describe how we compute Dgt and Cgt given a capture from the rig.
Since the rig may not be perfectly rigid, we first compute camera poses,

i.e., intrinsics and extrinsics, using structure from motion [17]. For computing
ground truth depth using multi-view stereo, we use a method similar to [13]
that is designed to give accurate depth for fine structures while avoiding edge
fattening artifacts. We describe it in more detail below.



Du2Net: Learning Depth Estimation from Dual-Cameras and Dual-Pixels 19

(a) Right Image (b) Left Image (c)GT (d)GT(Occ.)

Fig. 10: Examples of collected data. The right view and left view (a,b) of the
binocular stereo pair, the ground truth disparity (c), and the ground truth dis-
parity for occluded pixels (d). Low confidence disparity is rendered in black in
(c) and (d).
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All ten RGB images are resized to 756× 1008. For each view, we use a plane
sweep algorithm, with 256 planes sampled using inverse perspective sampling
between 0.2m and 100m, and take the minimum of a filtered cost volume as
each pixel’s depth. To compute the cost volume, for each pixel, we compute the
sum of absolute differences for each of the warped neighbors and then bilaterally
filter the cost volume using the grayscale reference image as the guide image
thus avoiding edge fattening artifacts [39]. We use a spatial sigma of 3 pixels
and a range sigma of 12.5 for the bilateral filter.

Following [13], we also estimate per-pixel confidence for depth, i.e., a scalar
in the range [0, 1]. Specifically, we check for depth coherence across views by
checking for left / right consistency [4]. We first compute consistency with each
of the 9 neighboring images using the consistency measure in [13]. Then, under
the assumption that a pixel must be visible in at least two other cameras for its
depth to be reliable, we take the product of the largest two consistency values
for each pixel to compute our final confidence.

Even though we capture data from all five phones, we only use the data
from the center camera for training and testing since it’s likely to have the
most accurate depth. We use the estimated camera poses for the center phone
to rectify the stereo pair [12]. Specifically, we compute Wl and Wr, i.e., warp
maps corresponding to the left and and the right cameras that are applied to the
RGB images, depth maps and confidences for the left and the right images. The
camera poses are also used to convert depth into disparity between the recitifed
pair. See Fig. 10 for examples of rectified RGB images and the corresponding
ground truth disparity.

Further, since the telephoto camera has a smaller field of view than the main
camera, we apply a center crop of size 448×560 to all rectified images to restrict
ourselves to the area of overlap.

A.3 Computing Occlusion Confidence Cocc

As mentioned in the main paper, we also compute Cocc , i.e., a per-pixel con-
fidence where the ground truth disparity is accurate but the pixel is occluded
in the other camera. This allows us to evaluate and compare the methods in
regions that are occluded in one of the stereo views.

To compute it, we first estimate the set of pixels in the right image that are
in field of view of the left image but are occluded by an occluder. This can be
estimated as:

Occr =

(x, y) s.t.

0 ≤ x′ < W,

|Dgt
r (x, y) +Dgt

l (x′, y)| > ∆

|Dgt
l (x′, y) +Dgt

r (x′ +Dgt
l (x′, y), y)| ≤ ∆

|Dgt
l (x′, y)| > |Dgt

r (x, y)|

 (6)

where x′ = x + Dgt
r (x, y), W is the width of the rectified image, and ∆ is

set to 1-pixel disparity. The first condition enforces that the pixel is in field of
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view of the other (left) camera; the second condition ensures that the pixel is not
visible in the other camera by checking for failed left-right consistency check; the
final two conditions check that the pixel is occluded by an object that is visible
in both the views (consistency check succeeds) and is in front of the occluded
pixel. Finally, for pixels that are in the set Occr we set Cocc

r (x, y) to be the
product of the confidences of the pixel and the occluder, i.e.,

Cocc
r (x, y) =

{
Cgtr (x, y) · Cgtl (x′, y), if (x, y) ∈ Occr

0, otherwise
(7)

A few examples are shown in Fig. 10. Our conservative criterion for occlusion
confidence ensures that we have few false positives.

B Implementation Details

In this section, we provide more details about confidence volume fusion, network
architecture, and evaluation with affine fitting.

B.1 Cost Volume and Confidence Volume

In Sec. 4.2 of the main paper, we fuse confidence volume instead of the cost
volume. Here we give more explanation and motivation.

The commonly used cost volume [23] is a 3D volume with two dimensions
for the image space (H,W ) and one dimension for the disparity space R =
[0, 1, · · · , dmax]. Each voxel (x, y, d) is a floating number indicating the feature
distance if the pixel (x, y) in one view is matched under the given disparity d with
the other view. The distance can be computed using various distance metrics,
such as `1 or `2.

A soft–arg min, which is introduced in Eq. 1 in [23], is used to convert the
cost volume into a disparity map. Specifically, a confidence volume is calculated
as the softmax on the negative cost volume along the disparity dimension, and
output disparity is the sum of disparity hypotheses weighted by the confidence.
The operator to convert cost volume to confidence volume can also be written
as:

Confidence(x, y, d) =
e−Cost(x,y,d)/t∑
d∈R e

−Cost(x,y,d)/t
, (8)

where t controls the sharpness of the softmax and is set to 0.5 in our implementa-
tion. The voxels along the disparity dimension for each (x, y) forms a probability
distribution, i.e.,

∑
d∈R Confidence(x, y, d) = 1, indicating the likelihood of each

disparity proposal in R being correct (i.e. confidence). Therefore, the output
disparity is

D(x, y) =
∑
d∈R

Confidence(x, y, d) · d. (9)
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Fig. 11: Explanation of Volume Sampling. See text for details.

We now explain why it is better to sample confidence volume (Eq. 8) instead
of the cost volume. Besides normalizing the scales of the two cost volumes, they
may produce dramatically different results in some cases.

Fig. 11 illustrates one such case. For simplicity, we drop the image dimension
(H,W ) and only visualize the disparity dimension R for one pixel. On the left, we
show an example of cost volume learned from DP inputs and the corresponding
confidence volume. Note that the confidence is inversely related with the cost.
Since the DC inputs covers larger range of disparity compared to DP, the warping
process in Eq. 3 of the main paper usually samples many points out of the DP
disparity range. In Fig. 11, we demonstrate the case where only one sample falls
in the valid range of the DP disparity – sampling point with disparity 1. If we
sample cost volume and pad 0 for samples out of range, we obtain a cost volume
shown in (a) on the right. The corresponding confidence volume (according to
Eq. 8) indicates that 1 is a bad disparity hypothesis and all the others are equally
good, which is very inconsistent with the information provided in the original
DP cost volume. In the second case (b), we sample cost volume but pad with a
large value. Now, the disparity hypothesis 1 becomes the best hypothesis (unlike
(a)) but the confidence in 1 is much higher than the original confidence in DP
confidence volume. In contrast, if we sample the confidence volume and pad 0
as shown in (c), the produced confidence volume maintains exactly the same
confidence from DP volume for disparity 1, while the others are set to zero.

B.2 Network Architecture

We provide detailed network architecture in Fig. 12.

B.3 Evaluation with Affine Fitting

In the Sec. 5.4 of the main paper, we compared to dual-pixel based depth es-
timation solution DPNet [13]. Since depth from DP can only be predicted up
to an unknown affine transformation, Garg et al. [13] first estimate the affine
transformation by solving a weighted least squares problem using the ground
truth:
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Fig. 12: Network Architecture. The numbers on convolution layers represent
number of channels, size of filter, stride, and dilation respectively. The num-
ber on the leaky ReLU layer represents the slope for the negative input.
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α̂, β̂ = argmin
α,β

∥∥Cgt · ((α+ β ·Draw)−Dgt)
∥∥2 , (10)

where Draw is the network output. Dfit = α̂+β̂ ·Draw is then used for computing
the metrics. Even though Du2Net produces disparity in absolute scale and is free
from this ambiguity, we apply the same post-processing when comparing to the
DPNet for fairness (Du2Net∗ in Tab. 2 of the main paper).

C More Experiment Results

In this section, we provide more quantitative and qualitative evaluations.

C.1 Weighted Metrics

Our ground truth comes with a confidence mask (Sec. A.2), and we use it to
calculate weighted evaluation metrics.

MAE =

∑
p |D(p)−Dgt(p)| · Cgt(p)∑

p C
gt(p)

, (11)

RMSE =

√∑
p(D(p)−Dgt(p))2 · Cgt(p)∑

p C
gt(p)

, (12)

δ > ε =

∑
p 1(|D(p)−Dgt(p)| > ε) · Cgt(p)∑

p C
gt(p)

, (13)

where D is the predicted disparity, Dgt is the ground truth disparity, Cgt is the
confidence map, 1 is an indicator function which equals 1 if the condition is true
and 0 otherwise, and p is a pixel in the image.

C.2 More Quantitative Ablation Study

In the Sec. 5.3 of the main paper, we showed the quantitative evaluation of
our method under different ablations on all pixels Cgt. We perform the same
comparison on the occluded pixels using Cocc (Sec. A.3) to show the performance
in occluded regions.

Tab. 3 shows the evaluation of the unrefined disparity (i.e. the output of the
fused volume) under different fusion strategies. Consistent with the conclusion
drawn from all pixels, our method outperforms all the others on the occluded
regions.

Tab. 4 shows the evaluation of the refined disparity (i.e. the output of the
refinement) under different settings. Refinement with DP consistently outper-
form the case without DP on all the metrics. Using only DP is better than using
both under some metrics, which is reasonable since RGB may not be very help-
ful to recover details in the occluded region and may even hurt the valuable
information encoded in DP.
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Conf. Volume
All Pixels Occluded Pixels

MAE RMSE δ>1.25 δ>2 δ>3 MAE RMSE δ>1.25 δ>2 δ>3

DC 1.023 2.502 18.74 10.65 6.32 3.956 6.230 66.33 52.82 40.16
DP+DC (2D) 0.969 2.423 17.37 9.72 5.79 3.718 5.834 65.74 51.55 38.51
DP+DC (C) 0.964 2.372 17.51 9.79 5.80 3.671 5.768 65.49 51.63 38.62

DP+DC (Ours) 0.902 2.252 16.16 8.96 5.26 3.526 5.523 64.98 50.82 37.41

Table 3: Ablation study on volume fusion. We compare different ways of fusing
DP with the DC confidence volume. ‘(2D)’ indicates fusion of the 2D disparity
maps extracted from the two confidence volumes. ‘(C)’ indicates fusing cost
volumes instead of confidence volumes.

Refinement
All Pixels Occluded Pixels

MAE RMSE δ>1.25 δ>2 δ>3 MAE RMSE δ>1.25 δ>2 δ>3

RGB 0.838 2.197 14.17 7.74 4.55 2.627 4.866 46.17 33.70 24.18
DP (I) 0.835 2.173 14.25 7.75 4.54 2.518 4.600 46.07 33.25 23.47

DP 0.829 2.184 13.84 7.51 4.45 2.481 4.619 44.87 31.99 22.54
RGB+DP (Ours) 0.817 2.141 13.64 7.33 4.35 2.469 4.564 44.94 32.09 22.47

Table 4: Ablation study on refinement. We compare the different ways of using
DP to refine the best unrefined disparity from the left and show evaluation on the
final disparity. ‘(I)’ indicates that input DP images are warped before computing
features for refinement.

C.3 More Qualitative Ablation Study

We show more qualitative comparison in Fig. 13. Our method fusing DP into
the cost volume (d) significantly improves the quality of the unrefined disparity
compared to the case using only DC (c). Based on this improved unrefined
disparity with less error (d), refinement using both DP and DC (f) can further
improve the object boundary and thin structures compared to the case using
only DC (e).

C.4 More Qualitative Comparison to SOTA

We show more qualitative comparison to state-of-the-art stereo and DP based
approaches in Fig. 14, 15, and 16. Compared to other stereo based approaches
[5, 24] that only take DC as the input, our method performs better at object
boundary and thin structures. Compared to dual-pixel only approach [13], our
method produces significantly better depth for distant areas in the background
while maintaining the foreground details (Fig. 16).

C.5 Analysis of Best and Worst Cases

In Fig. 17 we show representative images from the best (top 3 rows) and the
worst (bottom 3 rows) results for our method as ranked by the MAE metric. As
expected, the method performs very accurately on images with high frequency
details and textured scenes whereas it does worse (along with other methods) in
textureless areas.
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(a) Image (b)GT (c)Dunref (d)Dunref (e)Dref (f)Dref

DC, RGB+DP Du2Net DP+DC,RGB Du2Net

Fig. 13: Ablations of our method. The right camera image (a), ground truth dis-
parity (b) with low confidence disparity in black, Dunref (c) from an ablation
where only the DC input is used for the confidence volume, Dunref (d) from
Du2Net, Dref (e) from an ablation where only the RGB image is used for re-
finement, and Dref (f) from Du2Net. DP input is useful for both the confidence
volume and refinement stages to recover accurate depth for fine structures and
occluded regions.
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 14: Qualitative comparison to state-of-the-art stereo and DP based methods.



28 Y. Zhang et al.

(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 15: Qualitative comparison to state-of-the-art stereo and DP based methods.
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 16: DPNet (f) performs worse in distant areas compared to methods that
take DC as input ((c), (d), (e)) due to the small baseline between the two dual-
pixel images.
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(a) Image (b)GT (c)Ours (d) StereoNet (e) PSMNet (f)DPNet

Fig. 17: Representative images from our best (top 3 rows) and worst (bottom 3
rows) results, as rated by MAE metric.
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C.6 More Results for Applications

We show more examples of computational photography applications. Fig. 18
shows results of synthetic shallow depth-of-field effect using disparity from dif-
ferent models. Our method produces better details for object boundary and thin
structure, which prevents artifacts near the subject boundary.
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(a) Image (b)Ours (c) StereoNet (d)PSMNet (e)DPNet

Fig. 18: Synthetic shallow depth-of-field results for different methods. Accurate
depth near occlusion boundaries is critical for avoiding artifacts near the subject
boundary.


