
Efficient 3D Implicit Head Avatar with Mesh-anchored Hash Table Blendshapes
Supplementary Material

Ziqian Bai1,2∗ Feitong Tan1 Sean Fanello1 Rohit Pandey1

Mingsong Dou1 Shichen Liu1 Ping Tan3 Yinda Zhang1

1 Google 2 Simon Fraser University 3 The Hong Kong University of Science and Technology

In this supplementary material, we provide additional
method details and more results, including hash encoding
details (Sec. A), warping fields details (Sec. B), network ar-
chitectures (Sec. C), training and testing details (Sec. D),
data statistics (Sec. E), additional experiments (Sec. F and
the supplementary webpage), as well as discussions on lim-
itations (Sec. G).

A. Hash Encoding Details

As described in Sec.3.1 and 3.2, we attach local hash ta-
ble blendshapes on each 3DMM vertex, which are linearly
blended with expression-dependent weights predicted via
the U-Net running in UV space as the merged hash table
for each vertex. The hyper-parameters of hash tables are
shown in Tab. A.

Parameters Values

Number of levels 2
Hash table size 28

Number of feature channels 4
Coarsest resolution 32
Finest resolution 64
Number of blendshapes per-vertex 5

Table A. Hyper-parameters for mesh-anchored hash table blend-
shapes.

Instead of attaching hash tables to all 3DMM vertices
(i.e. FLAME [5] in our work), we select a subset of vertices
to reduce the computation and model size, as well as ensure
a more uniform vertex distribution on the 3DMM surface.
More specifically, we subsample the vertices using poisson-
disk sampling from meshlab [2] on a template mesh with-
out eyeballs, and manually add 10 iris vertices, resulting in
1772 vertices in total.

∗Work was conducted while Ziqian Bai was an intern at Google.

B. Warping Field Details
As described at the end of Sec.3.3, following prior works
on deformable NeRF [1, 4, 9], we overfit 3D warping fields
on training frames to alleviate the negative influence of mis-
alignments between tracked 3DMM meshes and images due
to the noise in 3DMM tracking and unmodeled per-frame
contents such as hair movements. These warping fields are
discarded during testing as in [4] and [1] since they are over-
fit to training frames.

More specifically, we first assign a learnable latent code
ei for each training frame i. Given a query point q, we apply
positional encoding on its coordinates and concatenate with
the latent code ei, then feed them into an MLP FE(·) to
obtain a rigid transformation consists of 3 components: a
3D rotation R ∈ SO(3) , a rotation center crot, and a 3D
translation t. We then compute the warped query point q′

by applying the rigid transformation to the original query
point as

R, crot, t = FE (q, ei) (1)

q′ = R
(
q+ crot

)
− crot + t. (2)

In practice, we represent R with a pure log-quaternion and
directly regress it with the MLP FE(·). As described in
Sec.3.3, we denote this full warping procedure as q′ =
Ti(q) = FE(q, ei). The warped query point q′ is then used
to compute the density and color for volumetric rendering.

C. Network Architectures
Here we introduce the detailed network architectures of
three main components described in Sec.3.2 and 3.3: the
U-Net running in UV space, the MLP to predict densities
and colors, and a warp field MLP predictor. Please refer to
the main paper for details on how these components come
together to form our avatar model.

C.1. U-Net running in UV space

As described in Sec.3.2, the U-Net running in UV space
takes the 3DMM vertex displacements as the input and

1



outputs expression-dependent weights (to weighted sum
hash tables) and per-vertex features. For the encoder side,
we use downsampling residual blocks to extract a feature
pyramid with the number of channels for each level as
{8, 16, 32, 64, 128, 256}, with 128 as the input resolution
and downsample to 64, 32, 16, 8, 4, 2. In the decoder
side, we use upsampling residual blocks (i.e. with trans-
posed convolutions) and set the number of output channels
for each level to 128, 64, 64, 64, 64, 64. Finally, we use
a 1 × 1 convolution layer to get the weights map and the
feature map. The leaky ReLU is applied after each convolu-
tional layer with a slope 0.2. The input vertex displacement
map has a resolution of 128× 128. The output expression-
dependent weights map has a size of 128×128×5 (4 chan-
nels predicted by network, 1 channel set to a constant one)
and the output feature map has a size of 128×128×24. The
weights map and the feature map are then sampled back to
3DMM vertices as described in Sec.3.2.

C.2. MLP for Densities and Colors

As described in Sec.3.3, for each query point, we use the
tiny MLP to decode densities and colors from the summed
hash table embedding hi, the nearest per-vertex feature fik∗ ,
the query point tangent coordinates qik∗ of the nearest ver-
tex applied with positional encoding, and the camera view
direction with positional encoding. The tiny MLP consists
of two hidden layers, where each hidden layer contains a
Fully Connected layer with ReLU activation and 64 neu-
rons. Please refer to Sec.3.3 and Fig.3 for more pipeline
details. For the positional encoding, we use 8 frequency
bands on the query point tangent coordinates, and 4 fre-
quency bands on the camera view direction.

C.3. Warp Field MLP

The warp field MLP FE described in Sec.3.3 and Sec. B
consists of a backbone and three output branches. The back-
bone contains 5 hidden layers, where each layer has 128
neurons. Then, we append three branches, each is a 2-layer
MLP with 128 neurons width, for regressing the three out-
puts described in Sec. B: pure log-quaternion of the 3D rota-
tion (i.e., SO(3)) R, rotation center crot, and 3D translation
t. ReLU activation is used in all layers except the output
layers. We adapt a coarse-to-fine positional encoding strat-
egy as used in Nerfies [8] on the query point coordinates
before feeding into the MLP FE for better training stability.
We start with 0 frequency bands and increase to 6 linearly
after 80k training iterations.

D. Training and Testing Details

To obtain a consistent 3D world space, we normalize the
3DMM meshes with their neck poses to align the head in
3D space. During training, we use a hierarchical sampling

strategy as in [6], where we use 32 coarse and 32 fine sam-
ple points per ray. During testing, we obtain a union occu-
pancy grid for all training expressions, and run ray march-
ing on those valid voxels to achieve efficient rendering. To
ensure stable training, we enable 3D warping fields after
5k iterations. During training, we use the Adam optimizer
with β1 = 0.9, β2 = 0.999. In each mini-batch, we random
sample 256 rays from 8 images (i.e. 2048 rays in total) and
set the learning rates to: (1) 10−4 for the warping field MLP
and exponentially decay to 10−5 after 400k. (2) 5∗10−4 for
other neural networks and exponentially decay to 5 ∗ 10−5

after 400k. We train the model with 400k iterations for each
subject.

E. Data Settings
In Tab. B, we show more details on our data statistics over
10 subjects.

Number of
Train Frames

Number of
Test Frames

Resolution

subject0 1560 434 (512, 402)
subject1 1480 740 (512, 422)
subject2 1440 603 (512, 380)
subject3 1360 564 (512, 368)
subject4 1450 304 (512, 398)
subject5 2655 595 (512, 372)
subject6 1818 696 (512, 452)
subject7 3912 817 (512, 512)
subject8 2656 898 (512, 344)
subject9 2049 351 (512, 512)

Table B. Data statistics over 10 subjects.

F. Additional Experiments
F.1. Additional Results

In this section, we provide additional experimental results
and comparisons with prior state-of-the-art methods. Please
see Fig. A and Fig. B for qualitative results and the accom-
panying supplementary webpage for video results.

In Fig. A and Fig. B, we show more image results
comparing with prior state-of-the-art approaches. PointA-
vatar [12] and INSTA [13] give overall inferior render-
ings than ours due to their limited model capacities in
capturing static (e.g., glasses, hairs) and dynamic (e.g.,
expression-dependent deformations and wrinkles) avatar
details. NeRFBlendshape [3] produces less stable re-
sults, leading to severe artifacts around mouth and obvious
floaters on avatar boundaries. MonoAvatar [1] stably gen-
erates high quality renderings and animations, but is much
slower than our method (i.e., 0.5 FPS vs. 35.9 FPS) and
slightly smoother on some details, for example, hairs, teeth

2



and wrinkles. Our method overall achieves one of the best
rendering quality, . Please refer to Sec. G for more discus-
sions on our limitations.

In the accompanying supplementary webpage, we in-
clude video results on various subjects with side-by-side
comparisons to prior state-of-the-art methods, including
PointAvatar [12], INSTA [13], NeRFBlendshape [3], and
MonoAvatar [1]. The videos show that our method is able
to produce high-quality renderings while maintaining real-
time speed.

F.2. Comparisons to More Works

Here, we provide comparisons to more state-of-the-art
methods that deliver relatively fast solutions for (partially)
volumetric head avatar, including AvatarMAV [10] and La-
tentAvatar [11]. AvatarMAV [10] represents the head avatar
by feature grid blendshapes to achieve fast training. Laten-
tAvatar [11] learns a neural expression latent space instead
of using 3DMM expression codes, and generate triplanes
from this expression latent space. The triplane is rendered
into a low resolution feature map, which is then used to syn-
thesis the output RGB images via a 2D CNN.

As shown in Tab. C, our method is able to achieve
comparable rendering quality with these SOTA approaches,
while supporting real-time rendering simultaneously. Note
that LatentAvatar [11] uses heavy CNNs to directly synthe-
sis output images, which leads to good sharpness (shown by
LPIPS) but temporally 3D inconsistent high-frequency de-
tails. Also, directly synthesis image with CNN is an orthog-
onal direction to our method, which can also be appended
to our pipeline.

LPIPS SSIM PSNR Mean FPS
AvatarMAV [10] 0.128 0.792 23.51 2
LatentAvatar [11] 0.092 0.763 21.94 16
Ours 0.100 0.795 22.77 35.9

Table C. Quantitative comparisons with more state-of-the-art ap-
proaches. Our method achieves comparable rendering quality,
while supports real-time rendering with a 512× 512 resolution.

F.3. Ablation on Discarding Hash Tables

Here, we investigate a new ablation setting No Hash + UV
CNN, where we discard all hash tables while keeping other
parts unchanged. In this way, our model decodes the neural
radiance field thoroughly from the vertex-attached features
as in MonoAvatar [1] but with a much smaller MLP for fast
rendering. This gives the following results: 0.164 / 0.759
/ 21.57 for LPIPS / SSIM / PSNR, which are largely infe-
rior than our full model Ours. This indicates that the local
hash tables are important for boosting the model capacity to
achieve photorealism rendering quality.

F.4. Geometry Visualization and Analysis

For the purpose of a comprehensive system analysis, we
visualize the resulting geometry (as normal maps) of our
avatars and compare with prior state-of-the-art approaches.
Fig. C shows the normal map visualization. PointA-
vatar [12] gives smooth geometry estimation thank to their
relighting formulation. But their renderings are overall blur-
rier than other methods. INSTA [13] generates geome-
tries closing to the 3DMM meshes since they regularize the
NeRF depth to the rasterized 3DMM depth on face region,
which also leads to incorrect shapes for beard. Moreover,
their rendered images are also suffered from unsatisfying
quality. Despite NeRFBlendshape [3] gives relatively good
renderings, their estimated geometry is very noisy, presum-
ably because that they do not leverage the 3DMM mesh as
a shape prior. MonoAvatar [1] gives both decent geome-
tries and renderings, but is one order of magnitudes slower
than real-time speed. Our method gives reasonable geome-
tries that are slightly noisier than MonoAvatar, but supports
real-time rendering speed while maintaining decent image
quality.

G. Limitations

Comparing with the state-of-the-art high quality MonoA-
vatar [1], our method is facing some quality trade-offs.
On the positive side, our method captures more high fre-
quency details such as hairs, teeth, and wrinkles thank to
the high flexibility of hash table embeddings. However, this
also introduces slightly more floaters than MonoAvatar [1]
(Fig. D), which is a common issue for methods based on in-
stant NGPs [7]. Presumably due to the same reason as well
as poor tracking, we also observe a slightly less stale perfor-
mance around the mouth interior regions and thin structures
such as glasses frames. Further improving the robustness
and stability without hurting quality and speed is an inter-
esting future direction to explore.

References
[1] Ziqian Bai, Feitong Tan, Zeng Huang, Kripasindhu Sarkar,

Danhang Tang, Di Qiu, Abhimitra Meka, Ruofei Du, Ming-
song Dou, Sergio Orts-Escolano, et al. Learning personal-
ized high quality volumetric head avatars from monocular
rgb videos. In CVPR, pages 16890–16900, 2023. 1, 2, 3, 4,
5, 6

[2] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-
teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.
MeshLab: an Open-Source Mesh Processing Tool. In Euro-
graphics Italian Chapter Conference. The Eurographics As-
sociation, 2008. 1

[3] Xuan Gao, Chenglai Zhong, Jun Xiang, Yang Hong,
Yudong Guo, and Juyong Zhang. Reconstructing person-
alized semantic facial nerf models from monocular video.

3



PointAvatar INSTA MonoAvatarNeRFBlendshape Ours Ground Truth

Figure A. Comparisons on the rendering quality to previous state-of-the-art methods. From left to right, each column contains the images
of: 1) PointAvatar [12], 2) INSTA [13], 3) NeRFBlendshape [3], 4) MonoAvatar [1], 5) Ours, 6) Ground Truth. Our method faithfully
reconstructs the personalized expressions and high-frequency details, achieving one of the best rendering quality with real-time rendering
speed.

4



PointAvatar INSTA MonoAvatarNeRFBlendshape Ours Ground Truth

Figure B. Comparisons on the rendering quality to previous state-of-the-art methods. From left to right, each column contains the images
of: 1) PointAvatar [12], 2) INSTA [13], 3) NeRFBlendshape [3], 4) MonoAvatar [1], 5) Ours, 6) Ground Truth. Our method faithfully
reconstructs the personalized expressions and high-frequency details, achieving one of the best rendering quality with real-time rendering
speed.

5



PointAvatar INSTA MonoAvatarNeRFBlendshape Ours Ground Truth

Figure C. Visualization of normal maps and compare to previous state-of-the-art methods. From left to right, each column contains the
images of: 1) PointAvatar [12], 2) INSTA [13], 3) NeRFBlendshape [3], 4) MonoAvatar [1], 5) Ours, 6) Ground Truth. Our method
estimates reasonable geometries, while achieving one of the best rendering quality with real-time rendering speed.

ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia), 41(6), 2022. 2, 3, 4, 5, 6

[4] Wei Jiang, Kwang Moo Yi, Golnoosh Samei, Oncel Tuzel,
and Anurag Ranjan. NeuMan: Neural Human Radiance
Field From a Single Video. 2022. 1

[5] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and
Javier Romero. Learning a Model of Facial Shape and Ex-
pression From 4D Scans. ACM TOG, 36(6):194:1–194:17,
2017. 1

[6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes As Neural Radiance Fields for View

Synthesis. Communications of the ACM, 65(1):99–106,
2021. 2

[7] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 3

[8] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable Neural Radiance
Fields. pages 5865–5874, 2021. 2

[9] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan,
Jonathan T Barron, and Ira Kemelmacher-Shlizerman. Hu-

6



Small Floaters Less stable Mouth Interior Less stable Thin Structure

Figure D. Due to the high flexibility of hash table embeddings and
poor tracking on mouth interiors, we observe minor artifacts of
our method, including small floaters, less stable mouth interiors
and thin structures.

mannerf: Free-viewpoint rendering of moving people from
monocular video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16210–16220, 2022. 1

[10] Yuelang Xu, Lizhen Wang, Xiaochen Zhao, Hongwen
Zhang, and Yebin Liu. Avatarmav: Fast 3d head avatar
reconstruction using motion-aware neural voxels. In ACM
SIGGRAPH 2023 Conference Proceedings, pages 1–10,
2023. 3

[11] Yuelang Xu, Hongwen Zhang, Lizhen Wang, Xiaochen
Zhao, Han Huang, Guojun Qi, and Yebin Liu. Latentavatar:
Learning latent expression code for expressive neural head
avatar. In ACM SIGGRAPH 2023 Conference Proceedings,
pages 1–10, 2023. 3

[12] Yufeng Zheng, Wang Yifan, Gordon Wetzstein, Michael J
Black, and Otmar Hilliges. Pointavatar: Deformable point-
based head avatars from videos. In CVPR, pages 21057–
21067, 2023. 2, 3, 4, 5, 6

[13] Wojciech Zielonka, Timo Bolkart, and Justus Thies. Instant
volumetric head avatars. In CVPR, pages 4574–4584, 2023.
2, 3, 4, 5, 6

7


	. Hash Encoding Details
	. Warping Field Details
	. Network Architectures
	. U-Net running in UV space
	. MLP for Densities and Colors
	. Warp Field MLP

	. Training and Testing Details
	. Data Settings
	. Additional Experiments
	. Additional Results
	. Comparisons to More Works
	. Ablation on Discarding Hash Tables
	. Geometry Visualization and Analysis

	. Limitations

