Learning Personalized High Quality Volumetric Head Avatars
from Monocular RGB Videos Supplementary Material

Zigian Bai'"**  Feitong Tan'

Di Qiu'!  Abhimitra Meka'
Rohit Pandey!  Ping Tan?
! Google

Ruofei Du!

We provide additional information in this supple-
mentary material, including Warp Field Formulation
(Sec. A), Implementation Details (Sec. B), Examples of
Data (Sec. C), as well as Image and Video Results
(Fig. A, Sec. D, and the accompanying supplementary web-
page). Please see our project webpage augmentedpercep-
tion.github.io/monoavatar for more results.

A. Warp Field Formulation

Motivation. Though the 3DMM fitting can reasonably
track the head and expression motions, there are still ad-
hoc motions that cannot be handled by the 3DMM, such as
the hair movements and tracking errors, which lead to mis-
alignments between the 3DMM mesh and images and cause
the model to learn blurred appearances.

As described in Sec. 3.1, inspired from prior works on
deformable NeRF [4, 10], we learn error-correction warp
fields with small magnitudes during training to reduce the
misalignments, enabling the model to learn sharper appear-
ances. During testing, we discard the warp fields since they
are overfit to training frames. Since the warp fields are small
in magnitudes (encouraged by the loss function L,,q4 in
Eq.3), they do not affect the inference heavily. As a result,
the renderings are equally sharp, albeit with slightly miss-
aligned finer details compared to the ground truth.
Formulation. We input the original query point q and a
learnable per-frame latent code e; (¢ is frame index) into the
error-correction MLPs F¢ to predict a rigid transformation.
The rigid transformation contains a rotation R € SO(3) ,
a rotation center ¢, and a translation . Finally, the rigid
transformation is applied to the query point to obtain the
warped point q’. Formally, we have

R, t = Fe (g, ei) (D
q/ _ R(q+crot) _ crot +t, (2)
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where R is parameterized by a pure log-quaternion pre-
dicted by the MLPs. We denote the full transformation as
q' = T.(q) = Fe(q, e;). Then, the warped point is used as
the query point to decode the density and color as described
in Sec. 3.1. Note that this warping field is only used during
training and disabled during testing.

B. Implementation Details

To improve the training convergence, we remove the
background [3, 7] and align the head in 3D space by nor-
malizing the 3DMM vertices with its neck pose. Similar to
NeRF [6], our full model is hierarchical with the coarse and
the fine networks, which are simultaneously optimized by a
photometric reconstruction loss. To ensure stable training,
we disable 3D warping field in the first Sk iterations, and
enable it in the following iterations. For optimization, we
use the Adam optimizer with ; = 0.9, B2 = 0.999. The
batch size is set as 1024 rays and the learning rates are em-
pirically set to: (1) 10~* and exponentially decay to 10~°
after 400k for warp field networks. (2) 10~3 and exponen-
tially decay to 10~* after 400k for other networks. We train
the model with total 400k iterations for each subject. We
adapt coarse-to-fine positional encoding (as used in Ner-
fies [8]) on the coordinate input of the warp field networks
for better training stability. More specifically, we start with
0 frequency bands and linearly increase to 6 after 80k it-
erations. For other modules, we adapt positional encoding
as in NeRF [6] with 10 frequency bands on all coordinate
inputs and 4 on camera views.

B.1. Network Architecture

As detailed in the main paper, the framework consists
of three modules: a 3DMM-anchored NeRF, a expression-
dependent feature predictor, and a warping field predictor.
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Monocular RGB Video

Controllable Photorealistic Head Avatar

Figure A. We propose a method to build a 3D avatar representation of a person using just a single short monocular RGB video (e.g., 1-2
minutes), which can be rendered with user-defined expression and viewpoint. Note how our method captures extreme expressions and fine
scale facial details. Please check our supplementary webpage for more video results, and discussions on the limitation.

B.1.1 3DMM-anchored NeRF

As described in Sec. 3.1 of the main paper, we adopt
the 3DMM-anchored neural radiance field (NeRF) to rep-
resent our head avatar. As shown in Fig. B, we attach 64-
dimensional feature vectors on each vertex of the FLAME
model [5], which are predicted from the U-Net described in
Sec. 3.2. During inference, we first concatenate the nor-

malized coordinates vf — q (positional encoded) of the ver-
tex with it’s corresponding attached features and pass them
into the MLPO, which comprises 3 hidden layers with 128
neurons each and applies ReLU activation, to produce latent
features. We then aggregate the latent features of the nearest
4 vertices by a inverse-distance based weighted sum. The
aggregated feature is then decoded into density and color
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Figure B. Illustration of Avatar Representation. Given a query
point, we find its k-Nearest-Neighbor (k-NN) vertices from the
3DMM. Then, we decode these vertices and features into a den-
sity and color with respect to the input camera view direction,
via Multi-Layer-Perceptrons (MLPs) interleaved with inverse-
distance based weighted sum.

with 2 branches. For density, the aggregated feature is de-
coded by MLP1 + a Fully Connected (FC) layer. For color,
the aggregated feature is decoded by MLP1 + MLP2. MLP1
comprises 3 hidden layers with 128 neurons each and ap-
plies ReLU activation. MLP2 comprises 1 hidden layers
with 64 neurons and 1 FC layer with 3 outputs. To handle
view-dependent effects, we also pass the ray view direc-
tion (positional encoded) into the MLP2 to decode the RGB
color.

B.1.2 Expression-Dependent Features Predictor

Our expression-dependent features predictor is a 6-level
residual U-Net. We use residual blocks to extract feature,
and the feature channels of each level are set as 8, 16, 32,
64, 128, 256. In the decoder, residual blocks with trans-
posed convolutions are applied to increase the spatial reso-
lution. The leaky ReLU is applied after each convolutional
layer with slope 0.2. The input of the predictor is a 3D de-
formation map in 256 x 256 resolution which stores the ver-
tex displacements from the neural expression to the current
facial expression in UV space.

B.1.3 Warping Field Predictor

The error-correction MLPs F¢ is utilized to predict error-
correction warping fields to reduce misalignments from
3DMM and improve the training. It consists of 5 hidden
layers with 128 neurons each, followed by ReLU activation,
then 3 branches of two-layers MLPs with 128 neurons are
added at the end for regressing each output (as described in
Sec. A: pure log-quaternion of the rotation (i.e., SO(3)) R,
rotation center ¢"°%, and translation t).

B.2. 3DMM Fitting Details

We have implemented the same optimization-based fit-
ting algorithm as NHA [2] with the following differ-

Figure C. Examples of reference expressions for video capture.

ences: We 1) used MediaPipe for improved nose, eyes,
and eyebrows landmarks; 2) re-initialized camera poses (by
Perspective-n-Point) and expression parameters (to neutral)
every 200 frames to prevent local optima; 3) increased op-
timization steps per frame to accommodate for more chal-
lenging expressions in our data. Note that we use the same
fitting results across all methods for a fair comparison.

B.3. Video Capture Protocol

We ask users to capture 1-2 min selfie videos with high
resolution (over 500 x 500 pixels in the head) under well-
lit conditions using phone/webcam, following instructions
below (the same as in Sec.4.1). For the training clip, the
users are asked to first keep a neutral expression and rotate
their heads, then perform different expressions during the
head rotation, with extreme expressions included. For the
testing clip, the users are asked to perform freely without
any constraints. We provide several reference expressions
shown in Fig. C for users to follow, but users are not asked
to strictly perform the same expressions.

C. Examples of Data
Our Data NerFACE Data
Subject0| Subjectl | Subject2 | Subject3 Subjectd
0.657 | 0.610 | 0.589 | 0.796 0.426

Table A. The standard deviations of fitted 3DMM expression
codes, averaged across code dimensions, on different subjects.

We include data examples (Fig. D) to show that our data
has a large expression coverage, thus is more challenging
than talking head style data used by prior works [1]. We also
compare the standard deviations of fitted 3DMM expres-
sion codes (averaged across code dimensions) on our data
and NerFACE data. As shown in Tab. A, our data has sig-
nificantly larger standard deviations, which indicates more
diverse expression coverage in our data.



Figure D. Examples of our captured training data, which includes various large expressions.

D. More Results

In this section, we provide more qualitative comparisons
of our method with state-of-the-art techniques and ablations
against our design choices. We also demonstrate the robust-
ness of our method in challenging cases where the generated
avatar is driven under significantly different conditions than
the original training sequence.

D.1. Multi-subject Comparison with SOTA

Fig. E shows a comparison of our method against state-
of-the-art techniques across several subjects for non-neutral
expressions. Note that our technique is able to faithfully
model and synthesize these challenging expressions across
the range of subjects, while preserving fine scale details
such as wrinkles and hair, mouth and lip motion, and eye
gaze direction, without introducing any significant artifacts.
While NerFACE [1] is able to capture the general expres-
sion and gaze, it introduces artifacts for example in Subject
3 and produces blurry details on skin and hair due to the
limitation of using a single global MLP to model the full ap-
pearance. IMAvatar [ 1 1] and NHA [2] struggle with captur-
ing volumetric effects in the hair and out-of-model objects
such as glasses due to the underlying surface based geom-
etry representation and result in artifacts along the bound-
aries. FOMM [9] fails to produce these challenging expres-
sions due to it’s inherent 2D representation.

D.2. Design Ablation Analysis

In Fig. F we visualize the close-up result produced by
various design choice ablations of our method as detailed in
Sec 4.4 of the main paper. These ablations show different
ways of predicting per-vertex features on the 3DMM mesh
which are spatially interpolated to obtain the volumetric ra-

diance field of the avatar. “Static Features” learns fixed per-
vertex features on the 3DMM mesh over the course of train-
ing. Since the features are not conditioned on the expres-
sion parameters, it struggles to properly model non-neutral
expressions. “3DMM codes” concatenates the expression
and pose codes to the static features. This results in repro-
ducing the expression better but still results in local arti-
facts. “3DMM codes MLP” improves the model capacity
by conditioning an MLP based VAE on the 3DMM codes
that decodes to vertex features. While this improves the lo-
cal artifacts, it still produces blurry result due to the global
representation. “Ours-C” uses a convolutional decoder to
produce UV space features from 3DMM codes. This sig-
nificantly improves the level of high-frequency spatial de-
tails in the synthesized image. Finally, “Ours-D” poses the
problem as an image-translation task in the UV space by us-
ing a convolutional encoder-decoder architecture to directly
translate the geometry deformations of the 3DMM to UV
space features. This generates local features that achieve
the most faithful reconstruction of the expression along with
better preserved spatial details.

D.3. Demonstrating Robustness and Applicability

In Fig. G, we demonstrate the avatars being driven by
the same subject at a different time and place than the orig-
inal training sequence. Note that the subject’s hair style,
scene lighting, and accessories such as glasses are different.
Our technique is able to faithfully reproduce the pose and
expressions even under the novel conditions, demonstrating
robustness and practical applicability. Please see the full se-
quence of this challenging avatar driving in novel conditions
in the accompanying supplementary webpage.
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Figure E. Qualitative Comparison to prior state-of-the-art monocular head avatars. Note how our approach more faithfully reconstructs the
ground truth expressions while preserving most of the high frequency details. Please refer to Sec. 4.2 in main paper for more discussions.

D.4. Video Results

In the accompanying supplementary webpage, we
demonstrate full-sequence results for following cases:

e Driving the avatar using a test clip that is captured in
the same conditions as the training data (i.e., same sub-
ject, same capturing condition).

e Driving the avatar by the same subject under novel
conditions of lighting, appearance, and accessories

(i.e., the same subject under different capturing con-
ditions).

To drive our avatar, we first obtain camera and 3DMM
parameters from the driving video via per-frame 3DMM
fitting, then apply these 3DMM parameters to our avatars
and render from frontal or novel camera views. Note in the
videos that our method produces high-quality controllable
avatars that capture identity, pose, and expression specific
idiosyncrasies. The avatar can be rendered in 3D from any
desired viewpoint. Since the training data is captured only
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Figure F. Comparison between different designs for local vertex feature learning. See Sec. 4.4 in main paper for more details. “Static
feature” struggles to capture personalized expressions. “3DMM Codes” improves the personalization but suffers from overall blurriness.
“3DMM Codes MLP” further improves the sharpness, but still cannot present the details. Overall, our convolution-based methods lead to
superior renderings on areas such as eyes, facial hairs, and frown wrinkles.

from frontal views, more extreme side views sometimes re-
sult in artifacts at the back of the head, which is an expected
limitation of our method. Other common challenging cases
are people with long hair and wearable. Our method is still
able to generate plausible results though indeed shows rela-
tively more artifacts.

Though small temporal jitters are also shown the videos,
we observed that the jitters are significantly mitigated when
the avatar is driven using synthetically smoothed 3DMM
motions. This suggests that the jitters are mainly due to
errors in 3DMM fitting. Improved 3DMMs and fitting al-
gorithms in the future would resolve this issue. Future re-
search could also explore the mitigation of temporal jitters
from a neural rendering perspective.

D.5. Visualize 3DMM and Final Geometry

We provide the visualizations and comparisons of the
3DMM mesh and the learned final geometry in Fig. H. Our
method is able to reasonably capture the out-of-3DMM ge-
ometry such as glasses and hairs.
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