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Fig. 1. Given a portrait and an arbitrary high dynamic range lighting environment, our framework uses machine learning to composite the subject into a new
scene, while accurately modeling their appearance in the target illumination condition. We estimate a high quality alpha matte, foreground element, albedo
map, and surface normals, and we propose a novel, per-pixel lighting representation within a deep learning framework.

We propose a novel system for portrait relighting and background replace-
ment, which maintains high-frequency boundary details and accurately
synthesizes the subject’s appearance as lit by novel illumination, thereby
producing realistic composite images for any desired scene. Our technique
includes foreground estimation via alpha matting, relighting, and composit-
ing. We demonstrate that each of these stages can be tackled in a sequential
pipeline without the use of priors (e.g. known background or known il-
lumination) and with no specialized acquisition techniques, using only a
single RGB portrait image and a novel, target HDR lighting environment
as inputs. We train our model using relit portraits of subjects captured in
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a light stage computational illumination system, which records multiple
lighting conditions, high quality geometry, and accurate alpha mattes. To
perform realistic relighting for compositing, we introduce a novel per-pixel
lighting representation in a deep learning framework, which explicitly mod-
els the diffuse and the specular components of appearance, producing relit
portraits with convincingly rendered non-Lambertian effects like specular
highlights. Multiple experiments and comparisons show the effectiveness of
the proposed approach when applied to in-the-wild images.
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1 INTRODUCTION
Compositing a person into a scene to look like they are really there
is a fundamental technique in visual effects, with many other appli-
cations such as smartphone photography [Tsai and Pandey 2020]
and video conferencing [Hou and Mullen 2020]. The most common
practice in film-making has been to record an actor in front of green
or blue screen and use chroma-keying [Wright 2013] to derive an
alpha matte and then change the background to a new one. However,
this does nothing to ensure that the lighting on the subject appears
consistent with the lighting in the new background environment,
which must be solved with laborious lighting placement or elaborate
LED lighting reproduction systems [Bluff et al. 2020; Debevec et al.
2002; Hamon et al. 2014]. Our goal is to design a system that allows
for automated portrait relighting and background replacement.

There is a significant body of work both in relighting, e.g. [Barron
and Malik 2015; Debevec et al. 2000; Nestmeyer et al. 2020; Sun
et al. 2019; Wang et al. 2020; Zhou et al. 2019], and in determining
alpha mattes and foreground colors, e.g. [Cai et al. 2019; Forte and
Pitié 2020; Hou and Liu 2019; Lutz et al. 2018; Xu et al. 2017]. A
few techniques simultaneously consider foreground estimation and
compositing in a unified framework [Wang and Cohen 2006; Zhang
et al. 2020b] and produce convincing composites when the input
and target lighting conditions are similar. However, the absence of
an explicit relighting step limits realism when the input and target
illumination conditions are different.
To generate convincing relit composites, Einarsson et al. [2006]

andWenger et al. [2005] captured reflectance field basis images using
time-multiplexed lighting conditions played back at very high frame
rates (∼ 1000Hz) in a computational illumination system, leveraging
image-based relighting [Debevec et al. 2000] to match the lighting of
the subject to the target background. Both methods also employed a
simple ratio matting technique [Debevec et al. 2002] used to derive
the alpha channel, based on infrared or time-multiplexed mattes and
recording a “clean plate”. These hardware-based systems produced
realistic composites by handling matting, relighting, and composit-
ing in one complete system. However, their specialized hardware
makes these techniques impractical in casual settings, such as for
mobile phone photography and video conferencing.
Inspired by these approaches, we propose a system for realis-

tic portrait relighting and background replacement, starting from
just a single RGB image and a desired target high dynamic range
(HDR) lighting environment [Debevec 1998]. Our approach relies on
multiple deep learning modules trained to accurately detect the fore-
ground and alpha matte from portraits and to perform foreground
relighting and compositing under a target illumination condition.

We train our models using data from a light stage computational
illumination system [Guo et al. 2019] to record reflectance fields
and alpha mattes of 70 diverse individuals in various poses and
expressions. We process the data to estimate useful photometric
information such as per-pixel surface normals and surface albedo,
which we leverage to help supervise the training of the relighting
model. We extrapolate the recorded alpha mattes to all of the camera
viewpoints using a deep learning framework that leverages clean
plates of the light stage background, extending ratio matting to

unconstrained backgrounds without the need for specialized light-
ing. With these reflectance fields, alpha mattes, and a database of
high resolution HDR lighting environments, we use image-based
relighting [Debevec et al. 2000] to generate composite portraits to
simulate in-the-wild photographs, and we use these for training
both a relighting and an alpha matting model.
While previous deep portrait relighting techniques either inject

target HDR lighting into the relighting network at the bottleneck of
an encoder-decoder architecture [Sun et al. 2019], or extract features
fromHDR lighting for modulating the features in the decoder blocks
[Wang et al. 2020], we instead employ a novel, pixel-aligned, and
rendering-based in-network lighting representation. This is based
on the insight that U-Net architectures [Ronneberger et al. 2015]
are best at leveraging extra inputs that are spatially or pixel-aligned
to the original input [Isola et al. 2017].

DiffuseSpecular (n=1)Specular (n=16)Specular (n=32)Specular (n=64)

Li
gh

t M
ap

HD
RI

Li
gh

t M
ap

HD
RI

Re
lit

 Im
ag

e
In

fe
rr

ed
 N

or
m

al
s

Fig. 2. We use light maps as a pixel-aligned lighting representation in our
relighting framework. Here we show several diffuse irradiance maps and
prefiltered HDR environment maps (panoramas), and their corresponding
light maps computed using our framework’s inferred surface normals. The
light maps have been scaled for display.

We generate our per-pixel lighting representation by precon-
volving the target HDR illumination with Lambertian and Phong
reflectance lobes [Phong 1975] to generate a set of prefiltered envi-
ronment maps with different specular exponents [Cabral et al. 1999;
Greene 1986; Miller and Hoffman 1984; Ramamoorthi and Hanrahan
2001] (see filtered HDRmaps in Fig. 2). Our trained model infers per-
pixel surface normals, which we use as indices into the prefiltered
lighting environments to form diffuse and specular light maps [Ra-
mamoorthi and Hanrahan 2001] (see Fig. 2), and we inject these into
the relighting model as pixel-aligned representations of the target
illumination. We demonstrate through experimentation that this
representation allows our relighting model to generate complex non-
Lambertian reflectance while correctly inferring lower-frequency
color and shading under the target illumination.
We finally demonstrate that this approach generalizes to in-the-

wild portrait images, relighting and compositing subjects captured
via mobile phone photography into novel backgrounds.

In summary, our main contributions are:
• A complete system – from data generation to in-the-wild in-
ference – for portrait relighting and background replacement.
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• A novel per-pixel lighting representation within a deep learn-
ing based relighting framework, which produces state-of-the-
art portrait relighting results.

• Photorealistic relighting and compositing results for in-the-
wild portraits, demonstrating the effectiveness and general-
ization of the proposed approach and the importance of high
quality ground truth data.

2 RELATED WORK
Image-Based Relighting. Leveraging the linearity of light trans-

port, relighting can be computed as a linear combination of images
in different basis lighting conditions [Dorsey et al. 1995]. Debevec
et al. [2000] realistically relit faces in novel HDR lighting environ-
ments from reflectance fields recorded one light at a time (OLAT) in a
spherical lighting rig. This image-based relighting approach has been
successfully used to render realistic digital actors in films [Sagar
2005], and has been applied to moving subjects [Einarsson et al.
2006; Meka et al. 2019; Wenger et al. 2005] using time-multiplexed
lighting and high frame rate cameras. However, these relighting
approaches require custom capture hardware which precludes using
them in the context of casual photography.

Recent advances in deep learning have enabled machine learning
solutions for relighting objects [Meka et al. 2018; Ren et al. 2015;
Sang and Chandraker 2020; Xu et al. 2018] and people [Kanamori
and Endo 2018; Meka et al. 2019; Sun et al. 2019]. Kanamori and
Endo [2018] enabled inverse rendering for the human body by in-
ferring albedo, illumination, and a light transport map that encodes
occlusion. However, the results of this method were restricted to
Lambertian surfaces and relighting only with low-frequency illumi-
nation. Nalbach et al. [2017] showed that appearance synthesis can
be solved by learning screen-space shading, using deferred shading
buffers with per-pixel scene attributes such as position, normal,
and material parameters. Xu et al. [2018] trained a neural network
to relight a scene under novel illumination based on a set of five
jointly selected OLAT images. Meka et al. [2019] learn a full 4D
reflectance field from two colored, spherical gradient illuminations
captured in a light stage. While these results are compelling, the
need for controllable lighting again prevents using the techniques
for casually shot photos.

Portrait Relighting. Several recent works [Nestmeyer et al. 2020;
Shu et al. 2017; Sun et al. 2019; Wang et al. 2020; Zhang et al. 2020a;
Zhou et al. 2019] do address portrait relighting for consumer pho-
tography. Sun et al. [2019] proposed a self-supervised method to
estimate an input portrait’s current illumination and to relight the
subject in a novel, target lighting environment. This work was the
first to apply deep learning to the single image portrait relighting
problem, achieving state-of-the-art results compared with earlier
techniques such as the mass transport approach of Shu et al. [2017].
While Sun et al. [2019] achieved realistic results for low-frequency
lighting, the network was less successful at rendering the hard
shadows and specular highlights appropriate for lighting with high-
frequency detail.

To better handle directional illumination, Nestmeyer et al. [2020]
trained a relighting network using physics-guided supervision with
per-pixel normals and albedo, a technique that we leverage in our

work. However, this method required the input portrait’s lighting
direction to be known at inference time, and both input and output
relit images were constrained to directional lighting conditions only.
In contrast, our technique works for arbitrary omnidirectional input
and target lighting environments. Zhou et al. [2019] developed a
deep learning approach to relight in-the-wild portraits under novel
spherical harmonic illumination, but the representation limited the
relighting to relatively low-frequency illumination.

Leveraging the physics-based supervision approach of Nestmeyer
et al. [2020], but for arbitrary input and output lighting, Wang et al.
[2020] recently used synthetic renderings of 3D photogrammetry
scans to supervise relighting explicitly using the diffuse and spec-
ular components of reflectance. While this method captures non-
Lambertian effects to some degree, the final renderings suffer from
artifacts due to the synthetic nature of the training data. Whereas
this approach injects illumination into the relighting decoder using
learned features concatenated along channels, we try to leverage
rendering-based insights with our pixel-aligned lighting representa-
tion. In our evaluation, we show that our method outperforms both
of the state-of-the-art techniques for single image portrait relight-
ing with arbitrary inputs and target lighting [Sun et al. 2019; Wang
et al. 2020], generates high-frequency self-shadowing effects and
non-Lambertian effects such as specularities, and generalizes well to
real-world portraits. Furthermore, in contrast to our approach, none
of the portrait relighting techniques in the literature explicitly build
a complete system for background replacement, which involves not
only relighting, but also integration with a robust matting module.

Alpha Matting, Foreground Estimation, and Compositing. With
significant progress in deep learning, many new matting methods
have been proposed that improve upon the state-of-the-art results
on classical benchmarks [Rhemann et al. 2009]. One such method is
that of Cai et al. [2019], which we leverage in our work. This work
showed the importance of an accurate input trimap, a partitioning
of the image into a definite foreground, a definite background, and
a boundary area where pixels are an unknown blend of foreground
and background colors. As in Cai et al. [2019], we disentangle the
matting estimation problem into two sub-tasks: trimap refinement
and matting estimation, although we add foreground prediction.

Image compositing is the combining of one or more images seam-
lessly to form a new image. Alpha-based linear blending [Porter and
Duff 1984] is possibly the simplest approach to solve this problem,
although the method often blurs high frequency details around the
boundaries and cannot handle complex illumination effects like
refraction [Zongker et al. 1999]. More sophisticated deep-learning
based methods have been recently proposed to learn a compositing
function directly from data [Lin et al. 2020; Sengupta et al. 2020;
Tsai et al. 2017; Zhang et al. 2020b], rather than relying on alpha-
based linear blending. Despite producing excellent results, these
methods fail to produce photorealistic composites when the target
illumination differs substantially from the input lighting condition,
leading to uncanny renderings. Tsai et al. [2017] proposed a tech-
nique to blend a given foreground in a new background using scene
semantic information. While the results look visually pleasing, they
mostly capture the diffuse component of the lighting and transfer
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Fig. 3. Proposed Framework. Our method starts with a single portrait and estimates an alpha matte and foreground image using a deep learning module. The
estimated foreground image is passed through a relighting network, which uses a target HDR lighting environment to relight the subject. Finally, a composite
module produces the output rendering.

high-frequency light transport effects directly from the input image,
which are inaccurate when the target illumination differs.

Our Approach. We propose a complete system for in-the-wild por-
trait relighting and background replacement, sequentially tackling
the problems of foreground estimation, relighting, and compositing.
Our method allows the portrait’s subject to be relit and convincingly
composited into into any HDR lighting environment (and if only a
background photo is available, its HDR lighting can be estimated
with a technique such as LeGendre et al. [2019]). To realistically
relight the foreground subject, we propose a novel per-pixel light-
ing representation that models the diffuse and specular reflection
components of appearance. Each module of our system is trained
directly from photorealistic synthetic renderings from light stage
reflectance field data.

3 FRAMEWORK
Our system (Fig. 3) consists of three sequential steps. First, a matting
module estimates the alpha matte and foreground from a given RGB
image. The estimated foreground and a target HDR lighting environ-
ment are then provided to a relighting module, which infers surface
geometry and albedo and uses a per-pixel lighting representation
to explicitly model the diffuse and specular reflection components
of rendered appearance. The relit result, the alpha matte, and the
new background are finally composited together, producing a relit
portrait with a new background, where the lighting conditions of
the portrait match that of the novel background.

3.1 Matting Module
A learned matting module is used to extract a high-quality segmen-
tation mask as well as the color of the foreground from the input
portrait. In particular, we employ a deep convolutional network and
extend the state-of-the-art method of Cai et al. [2019] to predict
both alpha matte and foreground color 𝐹 . Details regarding the
specific architecture, implementation, and training are provided in
Appendix A. This matting model is trained specifically to work for
portraits, rather than generic objects, using data captured in the
light stage system. Compared with previous works, our matting
training dataset is more realistic, as relighting allows the the illumi-
nation of the foreground subject to match the background. We show
in Sec. 6.2.1 that this improves our matting model’s performance.

3.2 Relighting Module
The relighting module regresses from an input foreground 𝐹 to a ge-
ometry image 𝑁 , encoding the per-pixel surface normals, and then
to an approximate diffuse albedo image 𝐴. These intrinsic image
features have been previously shown to assist in neural relighting
[Nestmeyer et al. 2020; Wang et al. 2020]. Differently from previous
work, we introduce a novel per-pixel lighting representation or light
maps 𝐿, which encode the specular 𝑆 and diffuse 𝐷 components of
surface reflection for a given omnidirectional target HDR lighting
environment and inferred surface geometry. Finally, a neural shad-
ing module performs the final foreground rendering. This proposed
system is shown in Fig. 4. In the following subsections, we describe
the components of our full relighting module.

3.2.1 Geometry Net. The input to the relighting module is the pre-
dicted foreground 𝐹 generated by the matting network, resized to
our inference size of 1024 × 768. Our goal is to infer the geom-
etry image 𝑁 , represented as per-pixel surface normals, and the
per-pixel albedo image 𝐴. Although a single architecture with mul-
tiple branches could predict these components at the same time
[Nestmeyer et al. 2020; Wang et al. 2020], we found that surface
normals were easier for the network to learn with high-quality
ground truth supervision (see Sec. 5), consistent with recent works
on single image geometry estimation [Saito et al. 2020]. Hence, the
first network is used to perform image-to-image translation of the
input RGB foreground to an image of surface normals using a U-Net
architecture (Figure 4, upper left) with 13 encoder-decoder layers
and skip connections. Each layer is run through 3 × 3 convolutions
followed by Leaky ReLU activations and the number of filters are
32, 64, 128, 256, 512, 512 for the encoder, 512 for the bottleneck, and
512, 512, 256, 128, 64, 32 for the decoder respectively. The encoder
uses blur-pooling [Zhang 2019] layers for down-sampling, whereas
the decoder uses bilinear resizing followed by a 3 × 3 convolution
for upsampling. The output of the module is a surface normal image
𝑁 in camera space coordinates.

3.2.2 Albedo Net. The surface normals 𝑁 and the input foreground
𝐹 are concatenated to form a 1024 × 768 × 6 tensor and passed as
input to another U-Net with the same architecture as the Geometry
Net. The output of this architecture is an image of the diffuse albedo
𝐴 of the subject.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.



Total Relighting:
Learning to Relight Portraits for Background Replacement • 1:5

Fig. 4. The relighting module is divided into three sequential steps. A first Geometry Network estimates per-pixel surface normals 𝑁 from the input foreground.
The surface normals and foreground 𝐹 are used to generate the albedo 𝐴. The target HDR lighting environment is prefiltered using diffuse and specular
convolution operations, and then these prefiltered maps are sampled using surface normals or reflection vectors, producing a per-pixel representation of
diffuse and specular reflectance for the target illumination (light maps). Finally, a Shading Network (Figure 5) produces the final relit foreground.

3.2.3 Light Maps as a Lighting Representation. Next, we represent
target HDR illumination in a pixel-aligned format suitable for con-
catenation along channels, for input to the U-Net based shading
network. Prior relighting works do not perform an explicit sampling
of the light directions in the input HDR environment map based
on surface geometry, despite also relying on U-Net architectures;
hence they must learn a difficult mapping function of panoramic
lighting image coordinates to portrait feature coordinates [Sun et al.
2019; Wang et al. 2020].

Given the input geometry, and the desire to produce appearance
under a target HDR lighting environment while assuming a distant
lighting model, one could envision treating each lighting pixel as a
unique light source, and then integrating the shading contribution
of each source for each pixel in 𝑁 given its surface normal and
a presumed bidirectional reflectance distribution function (BRDF).
However, this approach is computationally prohibitive, especially
when performed at training time for millions of images. In a simi-
larly compute-constrained setting, real-time graphics practitioners
have demonstrated that prefiltering or preconvolving an HDR light-
ing environment by cosine lobe functions representing Lambertian
or Phong specular BRDFs allows this integration to happen offline
[Greene 1986; Miller and Hoffman 1984; Ramamoorthi and Hanra-
han 2001], which is useful for real-time rendering of both diffuse and
specular materials. After precomputing a diffuse irradiance map and
several prefiltered HDR environment maps with different Phong
exponents (𝑛 = 1, 16, 32, 64) (examples in Fig. 2), at training or infer-
ence time, diffuse and specular reflectance images or so-called light
maps can be easily computed by indexing into these prefiltered maps
using the normal or reflection vectors. We show example light maps
in Fig. 2. In our ablation study, we demonstrate that our network
trained with this lighting representation outperforms those trained
using prior representations. The proposed approach also provides
some physically-based control over the final relit appearance, as
we can artificially manipulate the diffuse and specular light maps

Fig. 5. Shading Network. A first Specular Network is used to predict a single
specular light map, taking as input: multiple specular light map candidates
computed using different Phong exponents, the albedo, and the input fore-
ground (see text for details). The predicted specular light map is then con-
catenated with the diffuse component and the albedo and passed through
a final Neural Rendering Network to produce the relit foreground.

provided to the shading network, for example to make the skin
appear shinier or more matte.

3.2.4 Shading Net. This module consists of two sequential net-
works. The first, Specular Net, attempts to model the uncertainty in
the material properties of the input image. It takes as input specular
light maps 𝑆𝑛 generated with multiple Phong exponents 𝑛, along
with the predicted albedo 𝐴 and the input foreground 𝐹 . A lighter
weight U-Net with 13 layers with 8, 16, 32, 64, 128, 256 filters for the
encoder, 256 filters for the bottleneck, and 256, 128, 64, 32, 16, 8 filters
for the decoder runs 3𝑥3 convolutions with Leaky ReLU activations,
and predicts a four channel per-pixel weight image𝑊 . Finally, a
single specular light map 𝑆 is obtained by taking a weighted sum of
the candidates 𝑆𝑛 using the per-pixel weights of𝑊 , i.e. given a pixel
𝑢, 𝑣 : 𝑆 (𝑢, 𝑣) = ∑

𝑛𝑊𝑛 (𝑢, 𝑣)𝑆𝑛 (𝑢, 𝑣). This is physically motivated as
faces exhibit spatially-varying specular roughness [Debevec et al.
2000; Ghosh et al. 2010].
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A final Neural Renderer performs the actual image synthesis. This
architecture takes as input the albedo𝐴, the diffuse light map 𝐷 and
the blended specular light map 𝑆 and returns the final relit image.
The specific architecture is a U-Net with the same architecture as
the Geometry Net and the Albedo Net. We use a neural renderer to
compensate for approximations employed (e.g. a relatively simple
shading model) and any residual error in the predicted intermedi-
ate images. In Fig. 6, for a given input image (Fig. 6a), we show
an example predicted albedo 𝐴 (Fig. 6b) and diffuse light map 𝐷

(Fig. 6c). Multiplying these two images together yields an image
that approximates diffuse reflectance (Fig. 6d), although without
self-shadowing. We also show an example specular light map 𝑆 (Fig.
6f), and the result of adding the approximate diffuse reflectance
and the specular light map images together, essentially shading the
geometry according to the Phong model [Phong 1975], in Fig. 6g.
While this Phong-shaded model is clearly not realistic, we show this
overlay to demonstrate how a specular light map 𝑆 supplies the neu-
ral renderer with clues about the likely location of strong highlights,
given the inferred geometry. The neural renderer synthesizes high-
frequency details including cast shadows and any non-Lambertian
effects not captured in Fig. 6d, as shown in Fig. 6h.

Fig. 6. For an input portrait (a), we first infer surface normals (e) and albedo
(b). Given a target HDR lighting environment and the normals, we compute
the diffuse and specular light maps (c, f). Multiplying (b) by (c) yields
approximate diffuse reflectance, without self-shadowing, while (f) suggests
the locations of specular reflections for the new scene, as shown in the
Phong-shaded subject in (g). Our neural relighting module learns to recover
self-shadowing and specularities, as shown in result (h), beyond what can
be rendered using the simple shading model of (g or d).

3.3 Compositing
We composite the relit foreground into a new background extracted
as an oriented view into the lighting panorama, using the matting
equation (See Appendix A, Eq. 2). We also trained an additional deep
network to learn the compositing function directly from the data,
providing it with the alpha matte, relit foreground, background, and
original RGB input image, hoping that the network would learn to
correct residual compositing errors. However, we experimentally

observed that improvements from this approach were marginal and
insufficient to justify the added compute and memory requirements.

4 LOSS FUNCTIONS AND TRAINING
Our framework predicts multiple intermediate outputs. In our ex-
perience, supervising training using ground truth imagery for in-
termediate quantities (e.g. normals and albedo) facilitated network
convergence and led to higher quality results. We chose to supervise
training using intermediate stage imagery only when it was feasible
to photograph or generate high-quality, robust ground truth with-
out relying on significant approximations or strong assumptions.
In particular, we generated accurate supervision imagery for the
following intermediate and final outputs: the trimap, alpha matte,
foreground, albedo, surface normals, relit, and composited images.

4.1 Relighting Module Loss Functions
The relighting module minimizes the following loss terms:

Geometry L1 LossLgeo: ℓ1 (𝑁gt, 𝑁 ). The ℓ1 loss between the ground
truth surface normals 𝑁gt and the predicted normals 𝑁 encourages
the network to learn the geometry of the subject.

Albedo VGG loss Lvggalb : ℓ2 (vgg(𝐴gt), vgg(𝐴)). In order to pre-
serve sharp details, we follow previous work [Martin-Brualla et al.
2018; Meka et al. 2019, 2020; Pandey et al. 2019], and use the squared
ℓ2 distance between features extracted from the target albedo 𝐴gt
and the predicted albedo𝐴 images using a VGG network pre-trained
on the ImageNet classification task [Zhang et al. 2018].

Albedo L1 Loss Lalb: ℓ1 (𝐴gt, 𝐴). In addition to Lvggalb , we also
add a small ℓ1 loss between the ground truth albedo 𝐴gt and the
predicted albedo 𝐴 to speed up color convergence.

Shading VGG lossLvggshad : ℓ2 (vgg(𝑅gt), vgg(𝑅)). Similar toLvggalb
we also use the squared ℓ2 distance between features extracted from
the target relit 𝑅gt and the predicted relit 𝑅 images using a VGG
network pre-trained on the ImageNet classification task.

Shading L1 Loss Lshad: ℓ1 (𝑅gt, 𝑅). Again, we add a small ℓ1 loss
between the ground truth relit image 𝑅gt and the predicted relit
image 𝑅 to speed up color convergence.

Specular Loss Lspec : ℓ1 (𝑆 ⊙ 𝑅gt, 𝑆 ⊙ 𝑅). Due to the lack of ex-
plicit supervision to separate the diffuse and specular components
of reflection, we propose a self-supervised loss that encourages
the network to preserve specular highlights and view-dependent
effects. In particular, similarly to Meka et al. [2020], we compute
two saliency terms as 𝐿1 = 𝑅 ⊙ 𝑆 and 𝐿2 = 𝑅gt ⊙ 𝑆 , where 𝑆 is
the specular component computed following Section 3.2.4, 𝑅 is the
predicted relit image, 𝑅gt is the ground truth relit image and ⊙ in-
dicates element-wise multiplication. Finally, ℓ1 between the two
saliency terms is minimized during the training. While Meka et al.
[2020] compute this type of loss for a single directional light, our
proposed pixel-aligned lighting representation allows us to extend
this technique to the omnidirectional HDR illumination case.

Albedo Adversarial Loss Ladvalb : discalb (𝐴crop_gt, 𝐴crop). For the
Albedo Net, we add an adversarial loss on the face region to help the
network learn to plausibly remove high-frequency shading effects
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Fig. 7. Ground Truth Data Generation. To supervise training, we acquire OLAT images from multiple viewpoints using a light stage (col. 1-3). From these
captures, we estimate Albedo and Surface Normals (col. 4 and 5). Albedo has been brightened for display. A deep learning framework is used to estimate an
alpha matte (col. 7) from a rough segmentation trimap (col. 6). Finally, the OLAT images are linearly combined [Debevec et al. 2000] to produce relit images
according to a target HDR lighting environment (col. 8). The relit foreground is then composited into a corresponding view of the panoramic lighting, using
the estimated matte (col. 9).

from the input image while maintaining image detail. We use a
least squares discriminator [Mao et al. 2017] discalb to add a loss
between a crop of the face from the ground truth albedo 𝐴crop_gt
and a matching crop of the face from the predicted albedo 𝐴crop.

Shading Adversarial Loss Ladvshad : discshad (𝑅crop_gt, 𝑅crop). Simi-
larly, it is crucial for the Shading Net to synthesize realistic high-
frequency shading effects on the face. We use another least squares
discriminator discshad to add a loss between a crop of the face from
the ground truth relit image 𝑅crop_gt and a matching crop of the face
from the predicted relit image 𝑅crop. In addition to the relit images,
we also concatenate crops of the saliency terms 𝑅crop ⊙ 𝑆crop and
𝑅crop_gt ⊙ 𝑆crop to act as an attention mechanism for the discrimi-
nator to focus on facial reflections.

The relighting module was trained end-to-end using a weighted
sum of the above losses:

Lrelighting = 𝜆geo ∗ Lgeo + 𝜆vggalb ∗ Lvggalb + 𝜆alb ∗ Lalb

+𝜆vggshad ∗ Lvggshad + 𝜆shad ∗ Lshad + 𝜆spec ∗ Lspec

+𝜆advalb ∗ Ladvalb + 𝜆advshad ∗ Ladvshad

(1)

For our experiments we empirically determined these weight to
be 𝜆geo = 𝜆vggalb = 𝜆vggshad = 1, 𝜆alb = 𝜆shad = 0.1, and 𝜆spec =

𝜆advalb = 𝜆advshad = 2.

4.2 Training Details
We implemented our training pipeline in TensorFlow, distributing
the training across 8 NVIDIA Tesla V100 GPUs with 16GB of mem-
ory. Each iteration randomly picks 8 images of subjects relit with
random lighting environments for both inputs and target. We use
the ADAM optimizer [Kingma and Ba 2015] with a learning rate of
10−5. We optimized our system for 1𝑀 iterations for the training to
converge, taking seven days. For faster convergence and to reduce
memory usage, we trained matting and relighting separately. We

also trained the complete end-to-end architecture (with both mat-
ting and relighting) on Nvidia P6000 GPUs with 24GB memory, but
found the improvement in the results to be marginal. We suspect
that other factors, such as ground truth data quality and the overall
architecture design, are more important for overall quality.

5 DATA ACQUISITION AND GROUND TRUTH
GENERATION

To train our models using supervision, we require many paired
portraits of different subjects lit in various lighting environments,
with ground truth illumination for the target relit image. We also
require the estimated foreground and alpha matte components used
to generate the final composites into new scenes and the required
intermediate components as previously outlined, such as per-pixel
albedo and normals. To generate this data, we relight reflectance
fields of a variety of different people recorded bymultiple cameras in
a light stage [Debevec et al. 2000]. The relit images are composited
onto backgrounds using mattes derived from the light stage data
using a deep learning model. This process produces more realistic
training data than Wang et al. [2020], which trains on synthetic ren-
derings of facial photogrammetry scans with approximated BRDF’s.
As a result, our relighting technique does a better job of reproducing
complex light transport phenomena such as sub-surface scattering
and spatially-varying specular reflections on skin and hair.

5.1 Reflectance Field Acquisition
Following LeGendre et al. [2020], we photographed the reflectance
field (OLAT images) of 70 diverse individuals, each performing
nine different facial expressions and wearing different clothing and
accessories (hats, scarves, etc.). The subjects were chosen to span a
wide range of ages and skin tones to support model generalization.
The light stage has 331 programmable LED-based lights and 58 RGB
cameras, recording video at 60 Hz with 12.4 megapixel resolution
[Guo et al. 2019]. In total, we generated ∼ 700OLAT sequences, with
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Tracking Frame Alpha Matte (RM) Zoomed-in Tracking Frame Zoomed-in Alpha Matte (RM)

Fig. 8. Ratio Matting (RM) results, including an inset region to show the
recovery of fine structures such as hair strands.

each sequence viewed from multiple camera viewpoints. 10% of the
sequences were recorded with 58 cameras, covering the full 360◦ of
possible vantage points to provide training examples from arbitrary
viewpoints, covering the full body. We recorded the remaining 90%
of the data using a subset of 6 frontal viewpoints aiming to simulate
the framing of casual portrait photography. We thus recorded ∼
7, 560 unique sequences for the 58 cameras, which we then relit
and composited using ∼ 200 HDR panoramic lighting environments
sourced fromwww.HDRIHaven.com [Zaal et al. 2020] using random
rotations, generating 8M training examples. For evaluation purposes,
we divided the dataset into training and testing, manually selecting
seven subjects with diverse skin tones for the test set, along with
ten lighting environments. We show examples of generated ground
truth images in Fig. 7.

5.2 Matting and Foreground Acquisition
We next describe our method to calculate accurate alpha mattes for
the captured subjects.

5.2.1 Classical Ratio Matting. We directly measured ground truth
alpha mattes for the two most frontal camera viewpoints in the light
stage using the ratio matting technique [Debevec et al. 2002; Wenger
et al. 2005]. This method works by recording an image of the subject
silhouetted against an illuminated background (in our case, a flat
grey cloth) as one of the lighting conditions in the OLAT data. In
addition, we record an OLAT in the light stage without the subject
after each session, which includes a clean plate of the illuminated
background. The silhouetted image, divided by the clean plate image,
provides a ground truth alpha channel. The background cloth is not
illuminated while the rest of the OLAT sequence is captured, but
some of the OLAT lighting spills onto it. The clean plate OLATs
tell us how much background spill light 𝐵 there is for each lighting
direction, so we can use alpha and 𝐵 to compute the foreground
color 𝐹 for each OLAT image using the matting equation (Appendix
A, Eq. 2). Fig. 8 shows alpha mattes obtained using this technique,
with insets that show fine details in regions with hair strands.

5.2.2 Extending Ratio Matting with Deep Learning. Unfortunately,
only two cameras in the light stage see the subject against the grey
backing cloth at the back of the stage. The majority see the subject

Fig. 9. Proposed Background Matting (BM) results in the light stage, with
inset regions showing the recovery of fine structures.

in front of the struts and wires and cameras and light sources of
the apparatus, as shown in the first column of Fig. 9. To generate
alpha mattes for these other viewpoints, we make use of the clean
plate image for each such view. Next, similarly to Sengupta et al.
[2020], we trained a deep learning based alpha matting model that
takes as inputs the clean plate (the cluttered background image 𝐵),
a coarse segmentation mask computed using an off-the-shelf seg-
menter [Chen et al. 2018b], and the input image, and infers an alpha
matte. The specific architecture and training procedure is the same
used in Lutz et al. [2018]. Note that this ground truth alpha generat-
ing model is different from our in-the-wild alpha matting model of
Appendix A, since during the ground truth capture, the clean plate
𝐵 is known and supplied as additional input to the network.

We trained this ground truth alpha generation model with super-
vision, using a dataset created with our high quality mattes obtained
from the frontal cameras with ratio matting. To simulate the clut-
tered backgrounds for this dataset, we composited foregrounds
obtained from the frontal camera viewpoints over the cluttered
clean plate images 𝐵 acquired for the other non-frontal views using
the matting equation (Appendix A, Eq. 2). Thus we were able to gen-
erate a training dataset of images with ground truth 𝛼 that mostly
represented the light stage imagery captured for our non-frontal
viewpoints, where ratio matting was impossible (see Fig. 9). To make
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themodel robust to slightmisalignments between the cluttered clean
plate and input images, we added slight spatial perturbations to the
backgrounds during training, and added background images with
slight adjustments (say, for example, including clean plates cap-
tured across different days, where light stage cabling could subtly
move in the field-of-view). We also used standard data augmenta-
tion techniques to improve generalization (e.g. cropping, rotation,
adjustments in exposure, and adding Gaussian noise).

5.3 Albedo and Geometry Acquisition
To generate per-pixel surface normals, we follow the technique of
Wenger et al. [2005], which is based on solving an over-determined
system of linear equations at each pixel with photometric stereo
[Woodham 1989]. Using all 331 OLAT images, we first convert the
images to grayscale and, for a given pixel location (𝑢, 𝑣), we sort all
the pixel intensities across the images representing different lighting
directions. As there are many more equations than unknowns with
such a large lighting basis, we can discard pixels that represent the
lowest 50% of values, which are likely to be noisy or in shadow,
and the top 10%, which are likely to be specular reflections. This
increases the chances that the pixel values used for photometric
stereo represent unoccluded observations of the Lambertian compo-
nent of the surface reflectance as required for classical photometric
stereo. Fig. 7 shows examples of per-pixel surface normal images
generated using this technique.
Although the photometric stereo equation also yields per-pixel

estimates of diffuse albedo, we decided to use an image of the subject
in flat omnidirectional lighting instead. Such images are readily
available as the tracking frames used to align the OLAT sequences,
and include the useful shading cue of ambient occlusion.

5.4 Ground Truth Compositing
By leveraging the reflectance field for each subject and the alpha
matting achieved with our ground truth matte generation system,
we can relight each portrait according to a given HDR lighting
environment. We composite relit subjects into backgrounds corre-
sponding to the target illumination following the matting equation
(Appendix A Eq. 2). The background images are generated from the
HDR panoramas by positioning a virtual camera at the center of
the panorama, and ray-tracing into the panorama from the cam-
era’s center of projection with super-sampling. We ensure that the
projected view into the panorama matches its orientation as used
for relighting. We also use only high-resolution panoramas (16k
resolution) to ensure sharp features for the background imagery.
We use virtual cameras with different focal lengths to simulate the
different fields-of-view of consumer cameras. Fig. 7 (right) shows
several composite training images made with this process.

6 EVALUATION
In this section, we analyze the performance of our system by com-
paring with prior state-of-art approaches, and justify our design
decisions through an ablation study. As described in Sec. 5, we man-
ually selected seven subjects with diverse skin tones to be held out
from training for evaluation purposes, along with ten lighting envi-
ronments. To assess how well our complete system generalizes to

real world imagery, we run our full pipeline on portraits captured
in-the-wild under arbitrary illumination conditions. All results in
this section are on subjects unseen during training.

6.1 Comparisons with State-of-the-Art: Relighting
We compare the relighting module of our framework with the two
most recent state-of-the-art approaches for single image portrait
relighting: Sun et al. [2019] and Wang et al. [2020]. Both of these
approaches demonstrated superior performance compared with
earlier non deep learning based techniques; hence we use these
two methods as our baselines. Furthermore, both methods require
a single RGB input image and target HDR lighting environment
as input, as in our approach, though each uses a different lighting
representation. While the approach of Wang et al. [2020] relies on
regressing to intrinsic image components such as geometry, Sun
et al. [2019] treats the entire rendering process as a black box. As
the method of Wang et al. [2020] is designed to work on a crop
of the face region, we used this region-of-interest for all methods
including ours for a fair comparison.
For the comparison with Wang et al. [2020], the authors gener-

ously computed results for test images that we provided, as this
approach requires ground truth labels for various passes from a
synthetic renderer, unavailable for our light stage data. While the
authors of Sun et al. [2019] also generously computed results for our
provided evaluation dataset, we found in practice that their model
retrained on our larger dataset demonstrated superior performance,
so we refer to our implementation for a fair comparison.

Fig. 10. Qualitative comparisons between our method and the previous
state-of-the-art relighting techniques [Sun et al. 2019; Wang et al. 2020].
We use our evaluation set of light stage subjects not seen during training
for whom we can generate ground truth relit images. The first column has
been brightened for display.
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Fig. 11. Qualitative comparisons between the proposed and previous state-
of-the-art relighting methods [Sun et al. 2019; Wang et al. 2020] on in-the-
wild portraits.

For the evaluation subjects photographed in the light stage, we
have ground truth relighting results, enabling both qualitative and
quantitative comparisons among the proposed and state-of-the-art
techniques. We show qualitative results in Fig. 10. The proposed
method outperforms the previous state-of-the-art methods across
a diverse set of subjects, demonstrating increased photorealism. In
particular, when compared with Wang et al. [2020], our approach is
able to accurately relight subjects of different skin tones, whereas
the relighting of Wang et al. [2020] fails for subjects whose skin
tones were not well-represented in the training data (see Figure 10,
far left and far right). The method of Sun et al. [2019] has particular
challenges with both synthesizing and removing high-frequency
details like specular highlights and hard shadows, as its simple
encoder-decoder style architecture does not leverage each subject’s
intrinsic properties e.g. albedo and geometry.
The quantitative evaluation is presented in Table 1. For these

experiments, we computed multiple metrics to assess the quality
of image rendering. We compute the mean absolute error (MAE),
defined as the ℓ1 distance between the predicted relit image and
the ground truth relit image, the mean squared error (MSE), the
structural similarity index measure (SSIM) [Wang et al. 2004], and
finally a perceptual loss (LPIPS, the Learned Perceptual Image Patch
Similarity metric [Zhang et al. 2018]). To limit the comparison to
relighting quality only, all errors are computed only on the fore-
ground and ground truth masks which are used for all the methods
for a fair comparison. The proposed approach outperforms the pre-
vious state-of-the-art-techniques on every metric for the portrait
relighting task.
We also compare across methods for portraits photographed in-

the-wild under arbitrary illumination conditions, with qualitative
results shown in Fig. 11. Aswith the evaluation dataset, our approach

Table 1. Quantitative evaluations on test images with ground truth. We
compare our method and state-of-the-art methods for portrait relighting.

Proposed Wang et al. [2020] Sun et al. [2019]
MAE ↓ 0.0309 0.0907 0.0691
MSE ↓ 0.0028 0.0122 0.0104
SSIM ↑ 0.9394 0.5639 0.8708
LPIPS ↓ 0.0686 0.1814 0.1111

is able to relight subjects of diverse skin tones, while the approach
of Wang et al. [2020] generates image artifacts for skin tones not
observed in training. Once again, the method of Sun et al. [2019] is
often unable to remove existing or add novel high-frequency detail
like specular highlights to the portrait. Our method is particularly
effective at removing harsh specular highlights from the input image
(Figure 11, first column) and generalizes well to in-the-wild images.

6.2 Comparisons with State-of-the-Art: Matting
To validate the need for our custom portrait matting module, we
compare our approach with the best-performing state-of-art ap-
proaches that are also available as pre-trained models. In particular,
we selected the methods of Li and Lu [2020] and Xu et al. [2017],
which both rank among the top-performing methods in the popular
“alphamatting.com” benchmark [Rhemann et al. 2009]. Quantitative
results for our portrait dataset with ground truth are reported in
Table 2. We provided the same trimap for each method, computed
following the procedure of Appendix A.1. Our proposed method
specifically trained on portraits out-performs both pre-trained ap-
proaches. We demonstrate qualitative results for this comparison in
Figure 13, where our method is able to recover sharper boundaries
and fine details, and therefore more accurate alpha mattes. We also
observed that existing pre-trained models often generated artifacts
around the silhouette boundary due to color similarities between
the foreground and background regions.

6.2.1 Relighting for Alpha Matting. As a byproduct of our proposed
approach, we analyze the importance of data augmentation when
training an alpha matting estimation model. In particular, we as-
sess the effect of using accurate relighting when generating a large
dataset of realistic composited images. Previous related works rely
on composited datasets that do not model the illumination of the
target scene, instead using plain matting into random backgrounds,
e.g. [Xu et al. 2019]. We show that a more realistic training dataset
including relighting improves matting estimation. To do so, we
trained our matting network on the generated dataset (Section 5.4)
and compared with a network trained on the same data without
relighting the subjects to match the target scenes, instead simply
using a “fully lit” image for the foreground. Additionally, we trained
another version of this model, using a popular color transfer tech-
nique [Reinhard et al. 2001] to harmonize foreground colors to the
target background before the final composition. A similar approach
has been recently successfully applied for data augmentation when
training deep learning-based stereo matching algorithms [Song
et al. 2020; Tankovich et al. 2021]. We compare matting results for
these three models in Fig. 12, with quantitative results in Table 2.
To evaluate performance, we report the Mean Squared Error, SAD,
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and Gradient [Rhemann et al. 2009] on the unknown pixels of the
evaluation images (ground truth trimaps). The SAD and gradient
losses are scaled by 1000 due to the large resolution of the images
used in our experiment. As shown in Table 2 and Fig. 12, applying a
color transfer technique on the fully lit foregrounds improves the
performance of the matting model, but it still produces worse results
compared to our model trained on a more realistic dataset where the
foreground illumination is consistent with the background imagery.

Input image
Ours w/o relighting

(Fully lit)
Ours w/ relighting GroundtruthOurs w/o relighting

(Fully lit + color transfer)

Fig. 12. Relighting for alpha matting estimation, qualitative comparison.
Training the matting estimation model on our realistic ground truth com-
posites (relighting dataset, Section 5.4) improves model performance on
evaluation images with arbitrary lighting conditions.

These results suggest that: 1○ training a matting model using
imagery with illumination harmonized to the target background
improves matting model performance and generalization to arbi-
trary illumination conditions at test-time, especially for images with
illumination substantially different from a simple, flatly-lit portrait.
2○ Leveraging off-the-shelf, pre-trained matting modules for back-
ground replacement in portraits would lead to sub-optimal results,
since most of these models are trained on only a few natural images
which are composited on random backgrounds (minor foreground
color variability and often captured using flat lighting).

To further validate this, we evaluated the impact of using an off-
the-shelf state-of-art matting module on the overall relighting and
background replacement task. In particular, we selected Xu et al.
[2017] as the top performing method on portraits based on our quan-
titative evaluations and combined with our relighting module to
generate composited images. In Figure 14 we show the comparison

Table 2. Ablation Study and Comparisons: Relighting for Alpha Matting
Estimation.We report the Sum of Absolute Differences (SAD), Mean Squared
Error (MSE) and the Gradient error (Grad) [Rhemann et al. 2009] on our
evaluation split. The SAD and gradient losses are scaled by 1000 due to the
large resolution of the images used in this experiment (2048 × 1504).

Matting Ablation Study and Comparisons
SAD ↓ MSE ↓ Grad ↓

Closed-Form Matting. Levin et al. [2007] 23.3697 0.1241 4.0672
Pre-trained GCA Matting [Li and Lu 2020] 22.0385 0.1213 3.3602

Pre-trained Deep Image Matting [Xu et al. 2017] 21.4093 0.1171 3.3338
Ours (trained w/o relighting dataset, fully lit) 18.3489 0.0856 2.9378

Ours (trained with color transfer [Reinhard et al. 2001]) 17.9895 0.0817 2.8514
Ours (trained w/ relighting dataset) 15.5190 0.0764 2.4292

with our full system. Note how this off-the-shelf model often suffers
from artifacts around the subject, breaking the overall realism.

6.3 Ablation Study
In this sectionwe analyze the individual components of the proposed
framework to justify our design decisions.

6.3.1 Light Representation. To prove the effectiveness of our pixel-
aligned lighting representation as a standalone feature that improves
the relighting capability of our neural renderer, we fix our network
architecture, losses, and the training set and employ different al-
ternatives only for the lighting representation. In particular, we
compare with the approach of Sun et al. [2019], where a low resolu-
tion HDR lighting panorama is injected into the bottleneck layer of
the relighting network, and with the Light guided Feature Modu-
lation (LFM) approach of Wang et al. [2020], which extracts scales
and offsets from the HDR map using a fully connected network for
modulating the decoder features of the relighting network. The se-
lected competing light representations are both re-trained using our
training set. We show qualitative results in Figure 15. Even when
trained on the same dataset, our lighting representation allows for
more accurately rendered specular highlights, while also preserving
sharp details. This experiment also underlines that relying solely
on high-quality training data is not sufficient to obtain state-of-art
results and that the light representation is a key component of our
framework. Quantitative results for this ablation study are shown
in Table 3.

6.3.2 Use of Specular Light Maps. To isolate the effect of our spec-
ular light maps, we trained another model without providing any
such maps to the network. Rendering non-Lambertian effects, then,
would thus be framed as a residual learning task as in Nestmeyer
et al. [2020]. We also evaluated a variant where we removed Specular
Net, instead supplying the network with a single specular light map
𝑆 with specular exponent 𝑛 = 16. We show qualitative results in
Fig. 16. The blended specular light map helps guide the network
towards generating non-Lambertian effects, while using a single
specular light map, or using no specular lights maps at all, leads to
overly-smooth results with missing high-frequency specularities, as
shown Fig. 16. In this easy example, where the target illumination
is not all that dissimilar from that of the input image, the models
without our full approach cannot synthesize specularities, such as
on the subject’s nose. Quantitative results for this ablation are also
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Fig. 13. (a,b): Estimated alpha mattes for evaluation images made by compositing light stage images. (c-g): Estimated alpha mattes for in-the-wild images.
Note how the proposed matting module better generalizes on in-the-wild-images when compared with state-of-art pre-trained models using Adobe-1k and
alphamatting.com datasets.
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Fig. 14. Comparison with an off-the-shelf state-of-art matting module of Xu et al. [2017]. This experiment shows the need of a custom matting network trained
specifically on portraits to achieve sufficient realism for the background replacement task.

Fig. 15. Relighting results with the proposed light representation and comparisons with those of Sun et al. [2019] and Wang et al. [2020]. Our approach better
captures specular highlights and self-occlusions.

shown in Table 3, where our main network slightly outperforms
these other baselines.

6.3.3 Adversarial Loss. The adversarial loss on the face region al-
lows the network to learn to generate plausible, more photorealistic

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.



1:14 • Rohit Pandey, Sergio Orts Escolano, Chloe LeGendre, Christian Häne, Sofien Bouaziz, Christoph Rhemann, Paul Debevec, and Sean Fanello

Fig. 16. Specular Light Maps Ablation. The proposed model preserves specular highlights when compared with a network trained to predict the residual from
just the diffuse component (“No Specular Light Maps”) or the use of a single specular light map.

Table 3. Ablation Study:Quantitative Evaluation for Relighting Module. We
compare relighting results when using different lighting representations
and when various components of our system are removed.

Ablation Study
MAE ↓ MSE ↓ LPIPS ↓ SSIM ↑

Proposed 0.0176 0.0013 0.0802 0.9601
Light rep. of Sun et al. [2019] 0.0347 0.0049 0.0979 0.9355
Light rep. of Wang et al. [2020] 0.0293 0.0034 0.0961 0.9416

No Adversarial Face Loss 0.0289 0.0033 0.1069 0.9371
Single Specular Light Map 0.0184 0.0014 0.0811 0.9598
No Specular Light Maps 0.0225 0.0020 0.0868 0.9502

Fig. 17. The adversarial loss is an important component to preserve photo-
realism in the synthesized images.

facial imagery. In Fig. 17, we show relighting results obtained using
our full model (bottom left) and another model trained without the
adversarial loss (bottom right). For challenging input images as in
Fig. 17 (top left), the network trained without the adversarial loss

Fig. 18. Relighting results for models trained with a different number of
viewpoints (top) and subjects (bottom). Increasing the number of camera
viewpoints slightly improves the overall quality, especially for full body
portraits. A large and diverse training dataset with many photographed
individuals improves model generalization and relighting results.

struggles to remove bright specular highlights and hard shadows.
This performance is also demonstrated through our quantitative
evaluation in Table 3.
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6.3.4 Dataset Size. Here we assess the effect of the dataset size. In
particular we evaluate the quality improvements with respect to
the number of viewpoints (i.e. cameras) and the number of pho-
tographed subjects. Qualitative results are shown in Fig. 18, where
we trained the system with 3, 6 or 50 cameras and 6, 32 or 60 sub-
jects. The proposed algorithm appears to bemoderately robust to the
number of views and, although the results improve whenmore view-
points are added, the quality seems acceptable even when trained
on just 3 close-up cameras (∼ 30 degrees apart from each other). On
the other hand, decreasing the number of photographed subjects
used to train the model degrades the quality of the final relit images.
A large and diverse set of individuals photographed with different
apparel seems to be necessary for generalization, as also discussed
in the limitation section (Sec. 8).

6.4 Additional Qualitative Evaluation
We conclude the evaluation section by showing additional capa-
bilities of the proposed system, such as intermediate outputs and
relighting using directional light sources.

6.4.1 Intermediate Outputs. Whereas our final goal is image relight-
ing and compositing, our network predicts multiple intermediate
outputs as shown in Fig. 19 on a diverse set of in-the-wild por-
traits. Despite the very challenging input lighting conditions, our
approach estimates robust alpha mattes, albedo images, and surface
normals. See also the supplementary video for additional results on
live action sequences.

6.4.2 Directional Light Prediction. We also render one of the evalu-
ation subjects as illuminated by directional light sources, generating
HDR panoramic lighting environments to approximately match the
positioning of the lights within our light stage. Essentially, here we
are using our framework to synthesize OLAT images. Single light
sources can be used to emphasize complex light transport effects
such as specular highlights and subsurface scattering, which are
crucial to achieving true photorealism. We show qualitative results
in Figure 20, comparing the predicted images with the ground truth
OLAT images acquired in the light stage. Our approach synthesizes
both diffuse and specular components and learns self-shadowing
directly from the data. The model, however, does not accurately
reproduce specular highlights in the eyes (see limitations, Section
8).

7 APPLICATIONS
Computational Photography. The most general application of our

technique is to perform relighting and background replacement for
portraits captured in-the-wild. We show several examples in Fig.
21, where we selected three subjects (top row) and then applied
our technique to composite the subjects into multiple scenes. The
method can also handle dynamic lighting environments, i.e. where
the lighting environment rotates around the subject, yielding consis-
tency and stability across frames. This is demonstrated in Fig. 22 and
Fig. 1 (bottom row). The results show that the relighting network
produces realistic and plausible diffuse and specular reflections, can
simulate plausible rim lighting along the edge of the face, and can
reconstruct diffuse skin tones obscured by specular reflections in the

source images. The network also simulates a version of the veiling
glare one might expect to see in a backlit photo (see the middle
rendering in Fig. 22), since the light stage training data includes
natural glare from lights in the back of the stage. The supplementary
video contains additional results for a diverse set of subjects.

Live-Action Compositing. Although the full approach is designed
to operate on still images, we can also apply our technique to videos,
as demonstrated in our supplementary video. Despite the per-frame
computation, with no explicitly-modeled temporal consistency, our
approach produces overall accurate compositing of the moving sub-
ject, with occasional temporal inconsistencies in the predicted fore-
ground. Temporal considerations are discussed further in Section 8,
along with potential mitigation strategies.

Any Image Can Be Your Background. Our approach assumes that
an HDR lighting environment corresponding to the desired back-
ground imagery is available. We achieved this in practice by generat-
ing background plates via perspective projection of high-resolution,
HDR panoramas. However, this assumption somewhat limits the
applicability of our approach, because it cannot be used in conjunc-
tion with in-the-wild backgrounds, where illumination is typically
unknown. To relax this requirement, we combine our method with
LeGendre et al. [2019], which estimates the illumination from any
arbitrary image with a field-of-view similar to smartphone video.
In Fig. 23, we show how even with the approximated lighting, we
can produce compelling composites.

Portrait Lighting Transfer. In another application, we transfer
the lighting from one portrait to another. We use the method of
LeGendre et al. [2020] to estimate the illumination from a first
portrait, and then apply the illumination to a new portrait, with
believably consistent results. Example results are shown in Fig. 24.

Material Editing. The proposed per-pixel lighting representation
offers some control over the material properties of the subject during
neural rendering. To demonstrate this effect, we artificially adjust
the Phong exponents used to prefilter the HDR lighting environ-
ments at inference time (not during training). An example of this is
demonstrated in Fig. 25; an application of this technique is portrait
shine removal.

8 LIMITATIONS
Although our proposed relighting model consistently outperforms
previous works in relighting, it has limitations, as illustrated in Fig.
26. First, the albedo inference can be inaccurate for clothing, possibly
due to the lack of enough diversity of apparel in the training set (Fig.
26, first row). This rarely happens for skin regions, however, as skin
albedo colors form a strong prior, belonging to a relatively small
subset of possible pixel values. In contrast, the color space of clothing
is largely unconstrained. One potential mitigation strategy could
be to leverage a semantic mask to guide the network to distinguish
clothing from skin. We note, however, that our approach is the first
to attempt to relight portrait regions beyond the face and hair.

Additionally, although our relighting model generates compelling
non-Lambertian effects such as specularities on the face, it is not able
to synthesize specular reflections from the eyes of the subject (Fig.
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Fig. 19. Intermediate Outputs for in-the-wild photographs. While the final goal is background replacement with convincing relighting, our framework also
infers intermediate components such as foreground, alpha matte, surface normals and albedo.

26, middle row). This is likely due to the lack of explicit supervision
on the eyes, which contribute to a small portion of the loss functions.
Although the angular spacing between the lights for the light stage
system that we use aliases the BRDF for highly reflective surfaces
such as eyes, prior work has shown that neural light source inter-
polation is possible [Sun et al. 2020]. Future work could explicitly
supervise this region of interest, perhaps leveraging ground truth

specular/diffuse separation from polarization difference imaging
[Ghosh et al. 2010; Ma et al. 2007].

Furthermore, our approach operates per-frame, which can leads to
temporal instabilities, especially in alpha matte prediction. In Fig. 26,
bottom row, we show three consecutive frames with different errors
in the predicted foreground. Improving temporal consistency might
be as simply as giving an additional input to the matting network,
such as the predicted matte from the previous frame or multiple
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Fig. 20. Single directional light prediction. Our method learns to model
self-occlusions, shadows, and spatially-varying specular reflections.

video frames. Our model will also require considerable optimization
to perform efficiently enough for real-time applications.
Finally, our approach relies on an input HDR lighting environ-

ment. Although we have demonstrated results for a background
image without paired illumination leveraging existing models for
unconstrained lighting estimation [LeGendre et al. 2019, 2020], we
expect that addressing the full problem in an end-to-end manner
would provide the best possible results.

9 CONCLUSION
We have proposed a complete system – from data capture to model
training – used to perform portrait relighting and background re-
placement given only a single in-the-wild RGB portrait and a new
target HDR lighting environment as input. Our matting approach
maintains high-frequency details around foreground/background
boundaries and our relighting model accurately models the subject’s
appearance as they are composited in the new scene, with consistent
illumination. To form convincingly relit composites, we introduced
a novel, physically-based and pixel-aligned lighting representation
used for training our relighting module. Experiments on in-the-wild
images demonstrate that our relighting model can convincingly
render non-Lambertian effects including subsurface scattering and
specular reflections, outperforming state-of-the-art techniques for
portrait relighting.

Fig. 21. Application: Relighting and compositing for casual photography.
Given in-the-wild input portraits (row 1), we relight and composite the
subjects into novel backgrounds with consistent illumination (rows 2-4).
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Fig. 23. Application: Any Image Can Be Your Background. We estimate
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Fig. 26. Limitations. Clothing that is substantially different from what is
seen in training may cause poor estimates of albedo color (first row). Al-
though we reproduce plausible non-Lambertian reflections on skin, our
methods misses the specular highlights in the eyes (middle row). Finally,
when applied to video sequence, the approach may exhibit temporal incon-
sistency in the alpha matte prediction.
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Fig. 27. Matting and Foreground Estimation Network: Our multi-task model
predicts a refined trimap, foreground colors, and an alpha matte.

A MATTING MODULE DETAILS
Alpha matting estimation refers to the process of extracting an alpha
matte, and depending on the scenario, the colors of the foreground
and background objects in an image. Every pixel 𝐶 in the original
image is thus represented as a linear combination of a foreground
pixel color 𝐹 and a background pixel color 𝐵 [Porter and Duff 1984]:

𝐶 = 𝛼 ∗ 𝐹 + (1 − 𝛼) ∗ 𝐵 (2)
Given an image𝐶 , simultaneously solving for 𝐹 , 𝐵, and 𝛼 is under-

constrained. For RGB images, there are seven unknowns (RGB values
of 𝐹 and 𝐵, and 𝛼) and just three equations, one per channel of
𝐶 . This under-determined system motivates additional constraints
leveraged in classical matting estimation methods such as color
sampling, using a known background color, and/or using a trimap.

We propose to solve this problem using a deep learning approach.
Our matting network takes as input an RGB image (𝐶) and a coarse
trimap of the foreground (𝑇 ). A multi-task encoder-decoder archi-
tecture (U-Net [Ronneberger et al. 2015]) is then used to predict a
refined trimap𝑇 , the alpha channel 𝛼 , and the foreground 𝐹 (see Fig.
27). Our multi-task model is inspired by [Cai et al. 2019]; however,
we add a decoder branch that also predicts foreground colors. As
demonstrated in [Chen et al. 2018a; Forte and Pitié 2020; Hou and
Liu 2019], this type of deep learning architecture can handle the
simultaneous estimation of alpha matte and foreground colors if
supervised with appropriate ground truth data.

A.1 Input Trimap
An initial coarse segmentation is computed using an off-the-shelf
foreground segmentation network [Chen et al. 2018b] trained to
segment people in images. Then, the input trimap𝑇 is generated by
thresholding the foreground probabilities from the segmentation
mask and applying erode and dilate morphological operations to
define the unknown region.

A.2 Feature Extractor
The feature extractor takes as input the RGB image𝐶 and the trimap
𝑇 and performs a series of convolutions with kernel size 3 × 3 with
ReLU activations and 32, 64, 128, 256, 512 channels for each level
respectively. Its output is passed through three different decoder

branches that predict the refined trimap 𝑇 , the alpha matte 𝛼 , and
the foreground 𝐹 (Fig. 27, right).

A.3 Trimap Refinement
A first decoder branch predicts the refined trimap 𝑇 using convolu-
tions with skip connections from the encoder. The decoder consists
of 4 layers with 256, 128, 64, 32 filters, extracted with 3 × 3 convolu-
tions followed by Leaky ReLU activations. (Fig. 27, top branch).

A.4 Alpha Matte Prediction
A second decoder with the same architecture as the trimap refine-
ment predicts an alpha matte 𝛼 . Its output is passed through a series
of 3 residual blocks with 7 × 7, 5 × 5 and 3 × 3 convolutions (with
ReLU activations) together with the input RGB image to predict final
refined alpha mask 𝛼 . This refinement step (residual learning) has
proven to be effective improving fine details of the final estimated
alpha matte [Cai et al. 2019; Chen et al. 2018a; Xu et al. 2019].

A.5 Foreground Prediction
Finally, a third branch takes as input the encoded features to predict
the foreground 𝐹 . The decoder architecture matches that of the
trimap refinement branch.

A.6 Matting Module Loss Functions
The matting module relies on the following loss terms:

Trimap Loss L𝑇 : 𝐸 (𝑇gt,𝑇 ). This term computes the sparse cross
entropy loss between the refined trimap 𝑇 and the ground truth
trimap 𝑇gt.

Alpha Loss L𝛼 : ℓ1 (𝛼gt, 𝛼). To infer the alpha matte, we simply
compute an ℓ1 norm between the ground truth matte 𝛼gt and the
inferred matte 𝛼 , calculated on the unknown regions of 𝑇gt.

Pyramid Laplacian LossLLap:
∑5
𝑖=1 = 2𝑖−1∗ℓ1 (Lap𝑖 (𝛼gt), Lap𝑖 (𝛼)).

This multi-scale loss on the predicted alpha matte takes the differ-
ence between two Laplacian pyramid representations, accounting
from local and global differences. Contributions from deeper levels
are scaled according to their spatial support. As discussed in previ-
ous works [Forte and Pitié 2020; Hou and Liu 2019], this loss often
improves quantitative results.

Foreground Loss L𝐹 : ℓ1 (
∑
𝐹gt, 𝐹 ). Finally, an ℓ1 loss between the

predicted foreground 𝐹 and the ground truth foreground 𝐹gt is min-
imized. This loss is only computed for pixels where the foreground
is visible, 𝛼gt > 0.

Compositional Loss:L𝐶 . This term computes the ℓ1 norm between
the ground truth input RGB colors and a composited image using
the predicted foreground RGB colors, ground truth background, and
the predicted alpha matte. This constrains the network to follow
the alpha matting equation, improving predictions [Xu et al. 2017].

The matting model was trained end-to-end using a weighted sum
of previous losses:

Lmatting = 𝜆𝑇 ∗L𝑇 +𝜆𝛼 ∗L𝛼 +𝜆Lap ∗LLap +𝜆𝐹 ∗L𝐹 +𝜆𝐶 ∗L𝐶 (3)

We empirically determined values for these hyperparameters and
set 𝜆𝑇 = 𝜆𝐹 = 𝜆𝐶 = 1, 𝜆Lap = 4 and 𝜆𝛼 = 2.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.


	Abstract
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Matting Module
	3.2 Relighting Module
	3.3 Compositing

	4 Loss Functions and Training
	4.1 Relighting Module Loss Functions
	4.2 Training Details

	5 Data Acquisition and Ground Truth Generation
	5.1 Reflectance Field Acquisition
	5.2 Matting and Foreground Acquisition
	5.3 Albedo and Geometry Acquisition
	5.4 Ground Truth Compositing

	6 Evaluation
	6.1 Comparisons with State-of-the-Art: Relighting
	6.2 Comparisons with State-of-the-Art: Matting
	6.3 Ablation Study
	6.4 Additional Qualitative Evaluation

	7 Applications
	8 Limitations
	9 Conclusion
	References
	A Matting Module Details
	A.1 Input Trimap
	A.2 Feature Extractor
	A.3 Trimap Refinement
	A.4 Alpha Matte Prediction
	A.5 Foreground Prediction
	A.6 Matting Module Loss Functions


