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In this supplementary material, we provide more details
regarding the proposed data augmentation strategy, network
architecture and additional results. Finally, we also discuss
the limitations of the model. We also provide a supple-
mentary HTML page showing animated results of generated
face under various camera viewpoints and environmental il-
luminations.

1. Data Augmentation via Portrait Relighting

We provide additional information regarding our data
augmentation strategy which uses the portrait relighting
method of [12] to produce pseudo ground truth albedo,
normals, a relit image and the associated light maps (dif-
fuse and specular components) on the CelebA [9] and the
FFHQ [7] datasets. Specifically, we generate 5 and 10 relit
images for each image in CelebA and FFHQ datasets. The
HDRI map is randomly sampled from a collection of 400
maps sourced from public repository [14] and randomly ro-
tated horizontally. We show more example images of the
augmented CelebA images and FFHQ images in Figure 1
and Figure 2. For each identity, we visualize the relit im-
age and the associated light maps with two different HDRI
images.

2. Network Architecture

The details of the proposed architecture are shown in
Figure 3. As detailed in the main paper, the framework
consists of four modules: a neural implicit intrinsic field
(NellIF) network, upsampling blocks, a relighting network
and a mapping network. Similar to StyleGAN2 [8], the
mapping network consists of 8 fully-connected layers with
512 units, that maps the latent code to a style vector. The
output vectors are then broadcast to every fully-connected
layer in the NellF network and the upsampling blocks. For
each vector, there is an affine transformation layer to map
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it to an affine-transformed style, which is used to mod-
ulate the feature maps of the NellF network and upsam-
pling block. The NellF network consist of a positional en-
coder (the Fourier feature dimension is set to 10) and a 6-
layer MLP with 256 units. The feature maps of each fully-
connected layer are modulated by an affine transformation
from the mapping network. Each upsampling block con-
sists of two fully-connected layers modulated by the latent
code z, a pixelshuffle upsampler and a BlurPool with stride
1 which increases the resolution by 2x. The relighting net-
work is a residual U-Net with skip connections.

3. Additional Results

Here we show more results from our method.
3.1. Intermediate Intrinsic Images

In Figure 4, we visualize the albedo, relit image, nor-
mal map, diffuse map and specular map from our gener-
ator trained on FFHQ dataset. Note that since normal and
shading maps are directly generated from the neural implicit
field, we render them in low resolution for efficient training,
which is a strategy adopted and demonstrated to be success-
ful by other works [5]. We then rely on the generated feature
map F' to produce high frequency details in the albedo and
the final relit results.

3.2. Relighting Accuracy

We show a qualitative comparison of our relighting
method with environmental relighting of a real person cap-
tured in a dense high-resolution Light Stage in Figure 5,
which is very close to ground truth relighting. Note that
as the environment map rotates, our method produces plau-
sible shadows and specularities that spatially match the
pseudo-ground-truth setup, indicating that our underlying
3D volumetric geometry and skin reflectance is stable.
While there is some dampening of specularities and cast
shadows, the overall identity of the generated person is
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Figure 1. Relighting augmentation on CelebA [9] using [12] to generate albedo, normal, shading, and relit images with different HDRI

Relighting, which supervise the training via adversarial losses.
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Figure 2. Relighting augmentation on FFHQ [7] using [12] to generate albedo, normal, shading, and relit images with different HDRI

Relighting, which supervise the training via adversarial losses.

well preserved, which is a significant improvement over the
state-of-the-art [11].

3.3. Rotate Camera and Lighting

We show more subjects generated from the model
trained on the FFHQ dataset with randomly sampled latent
codes in Figure 6. For each identity (i.e. latent code), we
show the rendering under the same HDRI map but differ-
ent camera pose, and the rendering under a fixed camera
pose with rotating HDRI map. The results indicate that our
method provides controllability over camera viewpoint and
illumination, and deliver faithful rendering results.

4. Animated Results in Companion HTML
Page

We provide a supplementary HTML page to show an-
imated rendering results. Please open with your local
browser. In the HTML page, we show 1) our intermediate
intrinsic results and final relighting results in a continuous
camera trajectory, 2) comparison on the relighting faithful-
ness to ShadeGAN [ 1] under rotating HDRI, using image
based relighting with a Light Stage [6] as the reference,
3) relighting of the same or different subjects under same
or different environment map, 4) multi-view synthesis, 5)
a comparison on albedo stability with the baseline of pi-
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Figure 3. Proposed architecture of our neural generator, which consists of a neural implicit intrinsic field network, upsampling blocks, a

relighting network and a mapping network.

GAN [4] + TR [12].

5. Limitations

Although the proposed approach is a step forward to-
wards generative relightable 3D faces, it still has limita-
tions. First, it lacks high frequency details on geometry
and albedo when rendered at high resolutions (see Figure
4), despite our high quality supervision: we believe that us-
ing intuition from previous work [3,7, 8] could help address
this.

At more extreme viewpoint changes, the identity simi-
larity scores drop as demonstrated in Table 1 in the main
paper, indicating that stronger pose/viewpoint changes may
result in distortion of identity. This is likely due to skewed
distribution of our in-the-wild training data which is mostly
frontal, with very few side facing views. We believe that
this can be improved by more carefully curating the train-
ing data using importance sampling to have a more even
distribution of facial poses. Yet, please note that our method
outperforms other state-of-the-art 3D synthesis methods
[4, 11], which in turn are significantly better than 2D based
generative view synthesis methods [1, 10, 13].

Furthermore, aliasing effects are noticeable when chang-
ing viewpoints especially around the teeth and hair. An ap-
proach similar to [2] could potentially mitigate these effects.

Additionally, although our model shows impressive re-
lighting results, it still cannot capture the same details of

specular highlights when compared to image based relight-
ing using a Light Stage as shown in Figure 5. Additional
losses that focus on specularities may help mitigate this is-
sue.

Finally, the lack of supervision on the actual facial ex-
pression, makes the model unconstrained, leading to dif-
ferent face gestures when changing the viewpoint (see ani-
mated results in the provided HTML page). Adding seman-
tic information such as keypoints or per-pixel labels could
be an effective way to enable control over the expressions
and ensure more consistency across views.
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Figure 4. Results of intermediate intrinsic images from our model trained on FFHQ [7]. From left to right, we show the albedo, relit image,
normal map, diffuse map and specular map.
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Figure 5. We compare our relighting result to image based relighting (IBR) using a Light Stage [6] with the same HDRI illumination
that our method produces consistent and plausible shading, soft shadows and specularities.
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Figure 6. More synthesized images under rotating camera or rotating lighting. Note the relighting consistency and view-dependent effects.
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